A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Classical Teichmüller theory and (2+1) gravity
1998
Physics Letters B
We consider classical Teichmuller theory and the geodesic flow on the cotangent bundle of the Teichmuller space. We show that the corresponding orbits provide a canonical description of certain (2+1) gravity systems in which a set of point-like particles evolve in universes with topology S_g x R where S_g is a Riemann surface of genus g >1. We construct an explicit York's slicing presentation of the associated spacetimes, we give an interpretation of the asymptotic states in terms of measured
doi:10.1016/s0370-2693(98)01156-3
fatcat:r6ejpfzr7fbbtk4col5xnguqwa