
OpenMI: Open modelling interface

J. B. Gregersen, P. J. A. Gijsbers and S. J. P. Westen

ABSTRACT

J. B. Gregersen (corresponding author)

DHI – Water and Environment,

Agern Alle 5, DK-2970, Hørsholm,

Denmark

Tel.: +45 4516 9200

Fax: +45 4516 9292

E-mail: gregersen@lictek.dk

P. J. A. Gijsbers

WL – Delft Hydraulics,

PO Box 177, 2600 MH, Delft,

The Netherlands

S. J. P. Westen

WSL – Wallingford Software Ltd,

Howbery Park, WallingfordOX10 8B,

UK

Management issues in many sectors of society demand integrated analysis that can be supported

by integrated modelling. Since all-inclusive modelling software is difficult to achieve, and possibly

even undesirable, integrated modelling requires the linkage of individual models or model

components that address specific domains. Emerging from the water sector, the OpenMI has

been developed with the purpose of being the glue that can link together model components

from various origins. The OpenMI provides a standardized interface to define, describe and

transfer data on a time basis between software components that run simultaneously, thus

supporting systems where feedback between the modelled processes is necessary in order to

achieve physically sound results. The OpenMI allows the linking of models with different spatial

and temporal representations: for example, linking river models and groundwater models, where

the river model typically uses a one-dimensional grid and a short timestep and the groundwater

model uses a two- or three-dimensional grid and a longer timestep. The OpenMI is designed to

accommodate the easy migration of existing modelling systems, since their re-implementation

may not be economically feasible due to the large investments that have been put into the

development and testing of these systems.

Key words | decision support systems, integrated catchment modelling, interface standard,

model linking, open source

INTRODUCTION

Managing environmental processes independently does not

always produce sensible decisions when the wider view is

taken. Therefore, it becomes important to be able to model

not only the individual catchment processes – such as

groundwater, river flow and irrigation – but also their

interactions.

Consequently, many existing hydrological decision

support systems use combined hydrological models as the

main building blocks. One of the earliest of these systems

was SHE, the European Hydrologic Model System (Abbott

et al. 1986), which supports integrated modelling of surface

water, unsaturated flow and groundwater flow. Since then,

numerous other similar systems have been developed,

where each system supports a fixed combination of specific

hydrological and hydraulic models. In many cases, these

systems are fulfilling the needs for integrated modelling.

However, in some cases, the limited number of available

combinations supported by the individual systems forces

the modellers to make undesirable compromises with

respect to creating an accurate representation of the

physical phenomenon that is being modelled. Naturally,

any system can be adapted to specific needs. Depending on

the underlying software architecture this may be either

difficult or fairly easy, but for most systems such tailoring

requires access to the source code of the hydrological

models involved. In practice, this means that such systems

are typically built by model providers using only a limited

suite of models for which source code is available. Even

doi: 10.2166/hydro.2007.023

175 Q IWA Publishing 2007 Journal of Hydroinformatics | 09.3 | 2007



when the model provider has access to a large suite of

models, the number of possible useful combinations

between these models means that in many cases a

combination requested for a particular project is not

available as an off-the-shelf product and it may not be

economically feasible to create such a system for a single

user or project.

The objective of the EU co-financed HarmonIT project

was to address these problems through the development of

an open modelling interface (the OpenMI) that will allow

the easy linking of existing and new models. The HarmonIT

project, led by CEH in Wallingford (UK), had 14 European

partners representing end-users, research institutes and

commercial model providers. Perhaps the most notable

fact is that the three commercial partners (DHI – Water

and Environment, WL – Delft Hydraulics and Wallingford

Software), who are all providers of some of the world’s most

widely used modelling systems and in their normal business

considered as competitors, were dedicated in sharing their

knowledge and contributed in close co-operation to the

development and promotion of the OpenMI standard.

Essentially, the OpenMI standard is a software com-

ponent interface definition for the computational core (the

engine) of the hydrological and hydraulic models. Model

components that comply with this standard can, without

any programming, be configured to exchange data

during computation (at run-time). This means that com-

bined systems can be created and can be based on OpenMI-

compliant models from different providers, thus enabling

the modeller to use those models that are best suited to a

particular project. The standard supports two-way

links where the involved models mutually depend on

calculational results from each other. Linked models may

run asynchronously with respect to timesteps and data

represented on different geometries (grids) can be

exchanged seamlessly.

The usefulness of the OpenMI standard relies on the

availability of compliant models. In other words, when the

number of relevant compliant models has reached a critical

level, it becomes attractive both to deliver new compliant

models and to create linked systems based on OpenMI-

compliant models. Consequently, one of the main require-

ments for the OpenMI architecture was that it should be

cost-effective to migrate models and that the architecture

should, at the same time, give freedom to model providers to

make their own optimal software designs. Most OpenMI-

compliant models will, for many years, be based on existing

models that are being migrated. Such models typically

consist of thousands of lines of Fortran, C or Pascal code

and re-programming is too expensive. Those models should

be able to run both in their normal environment and under

the OpenMI environment, without having to maintain two

different versions and without having to complicate the

calculation core with a great deal of OpenMI-specific code.

The selected approach to fulfil all these requirements was to

make a lean standard that is essentially an interface

definition, allowing developers to make their own design

choices. In order to separate the OpenMI-specific code

from the calculation code, a wrapper design pattern was

developed and a number of generic support libraries that

can speed up the migration process were developed.

The ambition for OpenMI is that the standard should be

accepted and used by a wide range of model developers and

model users and possibly become a new world standard for

model linking. Much effort was put into making compre-

hensive documentation and guidelines (Gijsbers et al. 2005;

Moore et al. 2005; Tindall et al. 2005) and the standard and

all tools and libraries were made available as open source

(SourceFORGE 2005). Undoubtedly, there will be requests

for improvement of the OpenMI standard when the larger

community starts using it. In order to meet such require-

ments an OpenMI association is currently being estab-

lished. This association will be open for everyone to join

and will be responsible for the maintenance and further

development of the standard.

In order to demonstrate the capabilities of the OpenMI

a complex system of integrated catchment modelling is

shown in Figure 1. Meteorological data from a number of

measurement stations are handled by a database system.

This system will provide precipitation and evaporation data

to rainfall–runoff models. The rivers are modelled by a

simple conceptual river model that will obtain inflow data

from the rainfall–runoff models. For a particular river

reach, a more detailed representation of the river flow is

required. This river reach is modelled by a physically based

hydrodynamic river model. The river model will obtain

inflow data for its upper boundary from the conceptual

river model and will provide inflow data for the conceptual

176 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



river models that connect to the downstream boundary of

the hydrodynamic river model. Interaction between

groundwater and surface water is considered important at

the location of the hydrodynamic model. The underlying

aquifer is modelled by a 2D distributed groundwater model.

This groundwater model will receive leakage from the river

model. The river model will calculate this leakage based on

information about the groundwater level, which is obtained

from the groundwater model.

A model user who has access to appropriate OpenMI-

compliant models can establish such a system. The

procedure the user needs to follow in order to establish

the system is as follows:

1. The user populates each of the models with the required

data through the preparatory user interfaces of each

individual model. The prepared input data for these

models is saved to disk. Most OpenMI models will, when

input files are saved, also create a small OpenMI

standardized XML file (the OMI file), which contains

information about the filename for the OpenMI-compli-

ant model component (the LinkableComponent) and the

filenames for input files.

2. The user uses an OpenMI editor to add the models to a

configuration. A screen dump for the open source

OpenMI configuration editor is shown in Figure 2. In

practice, the user selects [Add model] in the configur-

ation editor and browses the file system to find the OMI

files. Each time an OMI file has been selected, the

OpenMI-compliant model component is loaded and the

component reads its input files.

3. Connections between the models are created simply by

dragging arrows from one model to another. Clicking a

connection brings up a link editor dialog (see Figure 3).

This dialog has information, obtained from the model

components, about which quantities can be provided

and which quantities can be accepted. The user can then

select the required combination.

4. When all the links have been established the user can

run the linked system.

5. When the model run has completed, the user can

investigate the results from the calculations through

the proprietory user interfaces of each individual

model.

The steps described above are valid for the open source

user interface. The OpenMI standard does not prescribe

that this particular user interface should be used, and we

foresee that in the future there will be many different user

interfaces available.

Figure 1 | Example of integrated catchment modelling that can be realized by

combining OpenMI-compliant models.

Figure 2 | Open source OpenMI configuration editor used to configure links between

the models shown in Figure 1.

177 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



EXISTING MODEL SYSTEMS

Before going into detail about the OpenMI, some defi-

nitions of the existing model systems are given.

A model application is the entire model software system

that is installed on a computer. Normally a model

application consists of a user interface and an engine. The

engine is where the calculations take place. The user

supplies information through the user interface, which

generates input files for the engine. The user can run the

model simulation, for example by pressing a button in

the user interface that deploys the engine (see Figure 4).

The engine reads the input files, perform calculations and

finally writes the results to output files.

When an engine has read its input files it becomes a

model. In other words, a model is an engine populated with

data. A model can simulate the behaviour of a specific

physical entity (e.g. the River Rhine). If an engine can be

instantiated separately and has a well-defined interface it

becomes an engine component. An engine component

populated with data is a model component.

There are many variations of the model application

pattern described above but most important from

the OpenMI perspective are the distinctions between

model application, engine, model, engine component and

model component.

THE OPENMI

The OpenMI is based on the ‘request & reply’ mechanism.

The OpenMI is a pull-based pipe-and-filter architecture,

which consists of communicating components (source

components and target components) that exchange mem-

ory-based data in a predefined way and in a predefined

format. The OpenMI defines the component interfaces, as

Figure 3 | Open source OpenMI configuration editor’s link property dialog for the link from the hydrodynamic river model to the groundwater model.

Figure 4 | Existing model application pattern.

178 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



well as how the data is being exchanged. The components in

the OpenMI are called linkable components to indicate that

it involves components that can be linked together. From

the data exchange perspective, the OpenMI is a purely

single-threaded architecture, where an instance of a link-

able component handles only one data request at a time

before acting upon another request. Data exchange in the

OpenMI architecture is triggered by a component at the end

of the component chain. Once triggered, components

exchange data autonomously without any supervising

authority. If necessary, components start their own comput-

ing process to produce the requested data. Most important,

however, is the fact that the OpenMI is not based on a

framework; it only has linkable components.

LinkableComponent

Essentially, a model can be regarded as an entity that can

provide data and/or accept data. Most models receive data

by reading input files and provide data by writing output

files. However, the approach for the OpenMI is to access

the model directly at run-time and not to use files for data

exchange. In order to make this possible, the engine needs

to be turned into an engine component and the engine

component needs to implement an interface through which

the data inside the component is accessible. The OpenMI

defines a standard interface for engine components (ILin-

kableComponent – see Figure 5) that OpenMI-compliant

engine components must implement. When an engine

component implements the ILinkableComponent interface

it becomes an OpenMI LinkableComponent.

Link (what is exchanged)

One LinkableComponent can retrieve data from another

LinkableComponent by invocation of the GetValues

method. However, this is only possible if the two

components have information about each other’s existence

and have a clear definition of the kind of data that has

been requested. This information is contained in a class

that implements the OpenMI ILink interface. Before

invocation of the GetValues method a Link object must

be created, populated and added to the two components by

use of the AddLink method. The Link object holds a

reference (handle) to the two linked components. The Link

object also contains information about what is requested,

where the requested values apply and how the requested

data should be calculated. This information is included in

the OpenMI Quantity class, the OpenMI ElementSet class

and the OpenMI DataOperation class, respectively (see the

ILink interface in Figure 5). The Link class defines a

specific connection between two LinkableComponents.

For two specific LinkableComponents many possible

links may exist.

Quantity (what)

The Quantity object defines what should be retrieved. This

could be water level or flow, for example. The Quantity

class represents this information simply as a text string (the

Description property). OpenMI does not provide any

naming convention for quantities. The Link class has a

target Quantity object and a source Quantity object. The

quantity description in the source Quantity object must be

recognizable by the source LinkableComponent and the

quantity description in the target Quantity object must be

recognizable by the target LinkableComponent. It is the

responsibility of the person who configures the linked

system to ensure that the combination of the two particular

quantities makes sense physically.

ElementSet (where)

The ElementSet object defines where the retrieved values

must apply. For example, a groundwater model may be

asked for either the groundwater level at a particular point

or the groundwater level as an average value over a

polygon; a river model may be asked for the flow at a

particular calculation node. These locations are defined in

the ElementSet. The ElementSet is a collection of

Elements, where each element can be an ID-based entity,

like a particular node, or a geometrical entity. A geometri-

cal entity is a point, a polyline, a polygon or a polyhedron.

The GetValues method returns a ValueSet, which is an

array of values or an array of vectors. Each value or vector

in the returned ValueSet applies to one Element in the

target ElementSet.

179 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



Figure 5 | org.OpenMI.Standard interfaces.

180 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



Figure 5 | continued.

181 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



DataOperation (how)

The DataOperation object defines how the requested values

should be calculated. Examples of data operations are time-

accumulated, spatially averaged and maximum values.

There are no OpenMI conventions for data operations. As

for quantities, data operations are simply defined by a text

string, which is recognizable by the source LinkableCom-

ponent.

ExchangeItem (what can be exchanged)

When model links are created and populated, information

about which quantities, locations and data operations each

LinkableComponent supports is needed. This information

can be obtained by querying the LinkableComponents for

InputExchangeItems and OutputExchangeItems. Each

InputExchangeItem contains a Quantity and an Element-

Set, describing what can be accepted at which location.

Each OutputExchangeItem contains a Quantity and an

ElementSet, describing what can be provided at which

location. OutputExchangeItems also contain information

about available DataOperations. OpenMI configuration

editors (see Figure 3) typically query the ILinkableCompo-

nent interfaces in order to display potential input and

output exchange items to the user for each model in a

configuration. This enables the user to configure and

establish the required connections (Links).

Time

Time in OpenMI is defined by either a TimeStamp or a

TimeSpan. A time stamp is a single point in time, whereas a

time span is a period from a begin time to an end time. Each

of these times is represented by the Modified Julian Date. A

modified Julian date is the Julian date minus 2400000.5 and

represents the number of days since midnight November 17,

1858 Universal Time in the Julian calendar.

GetValues

Now let us move back to the essence of the OpenMI, the

GetValues method. When one LinkableComponent invokes

the GetValues method of another LinkableComponent, the

source LinkableComponent must return the values for the

specified quantity, at the specified time stamp or time span

and at the specified location. If the LinkableComponent is

of the time-stepping kind of numerical model it does no

calculation until it receives a GetValues call. When the

GetValues method is invoked, the LinkableComponent

calculates as long as it is necessary to obtain the needed

data. Usually it is necessary for the source component to

interpolate or extrapolate its internal data in time and space

before these can be returned.

The OpenMI architecture puts a lot of responsibilities

on LinkableComponents. One of the reasons for this is that

we feel that any data conversion, like interpolations, can be

done in the most optimal way by the source component. If

the source component is a groundwater model, for example,

any interpolations of the groundwater levels are most safely

done by the groundwater model itself rather than some

external tool.

The OpenMI framework is very simple – or you may

say that there is no framework. All there is are Linkable-

Components. Once the system of linked model components

is created, the invocation of GetValues methods from one

model component to another is driving the calculations.

Since the ILinkableComponent interface (Figure 5) does

not have any methods that can be used to start the chain of

calculations, a trigger component is needed. The trigger

component is a LinkableComponent that has an additional

method for starting calculations (see the example below).

EXAMPLE

Let us look at a very simple example. A conceptual lumped

rainfall–runoff (RR) model provides inflow to a river model.

The populated link class is shown in Figure 6. Note that this

link is ‘ID-based’ because the ElementSets are not popu-

lated with any information about the spatial representation

of the models. Consequently, no spatial operations will be

performed when data is exchanged.

The sequence diagram in Figure 7 shows the calling

sequence for a configuration with a river model linked to a

rainfall–runoff model. The functionality shown in Figure 7

will typically be implemented in an OpenMI user interface

like the one shown in Figures 2 and 3.

182 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



The sequence diagram has the following steps:

1. The River Model object and the RR Model object are

instantiated. The Initialize method is then invoked for

both objects. Models will typically read their private

input files when the Initialize methods is invoked.

Information about name and location of the input files

can be passed as arguments in the Initialize method.

2. The River Model is queried for InputExchangeItems

and the RR Model is queried for OutputExchangeItems.

The InputExchangeItems and OutputExchangeItems

objects contain information about which combinations

of Quantities and ElementSets (locations) can be

accepted by the components as input or output,

respectively.

3. A Link object is created and populated based on the

obtained lists of InputExchangeItems and OutputEx-

changeItems. This example uses a hard-coded configur-

ation. However, if a configuration editor were used the

OutputExchangeItems and the InputExchangeItems

would be selected by the user from a selection box,

for example (see Figure 3).

4. The trigger component is created. This component is a

very simple LinkableComponent whose only purpose is

to trigger the calculation chain.

5. Link objects are added to the LinkableComponents.

This will enable the LinkableComponents to invoke the

GetValues method in the LinkableComponent to

which they are linked.

6. The Prepare method is invoked in all LinkableCompo-

nents. This will make each LinkableComponent do

whatever preparations are needed before calculations

can start.

7. The RunSimulation method is invoked in the trigger

object to start the calculation chain.

8. The trigger object invokes the GetValues method in the

River Model and the River Model calculates until it has

reached the EndTime specified in the argument list.

9. Before the River Model can complete a timestep it must

update its inflow boundary condition. In order to do

this, the GetValues method in the RR Model is invoked.

10. The RR Model repeatedly performs timesteps until it

has reached or exceeded the time for which it was

requested. If the River Model and the RR Model are

not synchronous with respect to timesteps, the RR

Model must interpolate the calculated runoff in time

before the values can be returned.

11. The River Model has now obtained its inflow boundary

value and can perform a timestep. The River Model

repeatedly invokes the GetValues method in the RR

Model and perform timesteps until it has reached or

exceeded the EndTime, whereafter it returns control

and values to the trigger object.

12. The trigger object returns control to the main program.

13. The main program invokes the Finish and Dispose

methods in all LinkableComponents. LinkableCompo-

nents will typically close output files when the Finish

method is invoked. The Dispose method will usually be

used by the LinkableComponents to de-allocate

memory.

SPATIAL MAPPING

Hydrological models usually have a schematization or grid

that represents the spatial resolution of the model. For

groundwater models, regular or non-regular two- or three-

dimensional grids may be used, whereas river models

typically use a one-dimensional grid. Conceptual catch-

ment models may use a closed polygon to describe the

catchment boundary.

When models with different spatial schematizations are

linked, the values associated with one schematization in the

source model must be transformed to be represented on the

schematization of the target model. In order to make such

transformations possible for any combination of models a

Figure 6 | The populated Link class.

183 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



Figure 7 | Configuration and deployment of linked models.

184 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



standardized spatial representation was defined. In

OpenMI terms this is called the IElementSet interface

(see Figure 5).

A two-dimensional grid for a groundwater model and a

one-dimensional grid for a river model are shown in

Figure 8.

The groundwater model grid consists of four elements

GE1, GE2, GE3 and GE4. These elements have the type

Polygon. Each corner of these polygons is a Vertex, and

each Vertex has Co-ordinates. The type Polygon is defined

in the standard in the enumeration ElementType, whereas

there are no interface definitions for Vertex and Co-

ordinate; these are only part of the OpenMI terminology

and are used in the naming of some of the methods in the

IElementSet interface.

The grid for the river model can be represented by an

implementation of the IElementSet interface, where each

branch is an element of type Polyline. Each Polyline

element will have two vertices, one at each end of the

line. The elements for the river model are shown in Figure 8

as RE1, RE2 and RE3.

Assume that the river model and the groundwater

model illustrated in Figure 8 are linked for the purpose of

transferring information about groundwater leakage from

the river model to the groundwater model. When the

groundwater model invokes the GetValues method in the

river model in order to obtain the leakages, the river

model must return a ValueSet, where each value rep-

resents the leakage that enters each element in the

groundwater model for the requested time or timespan.

With this in mind it may seem like a huge task to

implement the GetValues method in the linkable com-

ponent. However, since all spatial representations can be

accessed generically through the IElementSet interface, a

generic element mapper could be developed. Such a

mapper is provided in the open source org. Open-

MI.Utilities.Spatial package.

The two most essential methods in the ElementMapper

class are:

void Initialize(string method, IElementSet fromEle-

ments, IElementSet toElements)

and

IValueSet MapValues(IValueSet inputValues)

When Initialize is invoked, an internal mapping matrix

is created. This is typically done only once before the

calculations starts.

During calculations, when the GetValues method is

invoked, the source component uses this mapping matrix to

make the spatial conversion, simply by multiplying the

vector of values associated with the grid of the source

components with the mapping matrix.

For the example shown in Figure 8, the mapping matrix

will look as shown below:

A ¼

1 1=3 0

0 2=3 1=2

0 0 0

0 0 1=2

0
BBBBBB@

1
CCCCCCA
: ð1Þ

When the groundwater model invokes the GetValues

method in the river model, the river model can make the

spatial transformation of its internal calculated leakages

using the following multiplication:

I ¼ L £ A ð2Þ

where I is a vector with four components describing the

leakage contribution to each grid cell in the groundwater

model and L is a vector with three components, each value

being the calculated leakage in a river branch.

It is important to note that element mapping as

described above has nothing to do with the OpenMI

standard. Anyone can implement the transformations as
Figure 8 | Two-dimensional groundwater model grid and one-dimensional river

model grid.

185 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



they please; for example, if the linkable component is an

analytic model, and therefore has no grid element, mapping

does not make sense.

BI-DIRECTIONAL LINKS

The simple example describes a link between a rainfall–

runoff model and a river model. The calculated runoff

does not depend on the conditions of the river. However,

there are many examples of model linkages where

information needs to go both ways. For example, if two

physically based hydrodynamic river models are linked,

the flow rate from the upper river to the lower river

depends on the water level at the connection point in the

lower river, and this water level obviously depends on the

inflow from the upper river. Another example could be

linkages between a groundwater model and a river model,

as described in the example above, which usually also

require a two-way exchange of information. The leakage

rate from the river depends on the groundwater level and

the groundwater level depends on the leakage rate from

the river. In order to accommodate such two-way

dependences two links need to be established. In the

example of the groundwater model and the river model,

there is one link where the river model is the source

component and delivering leakage and another where the

groundwater model is the source component and deliver-

ing groundwater level.

Having two such links in the configuration leads to a risk

of deadlocks, where the two models keep asking each other

for data without progressing in time. To avoid such dead-

locks, the OpenMI standard requires that: (1) a linkable

component may not invoke GetValues in other components

before any previous invocations of GetValues from this

component have returned and (2) a linkable component

must always return values when the GetValues method is

invoked. This means that bi-directional linked models may

need to return extrapolated values because they cannot

progress in time due to the first restriction.

The mechanisms described above can be implemented

in the linkable components by setting an internal flag (e.g.

isBusy) to True when the GetValues methods is invoked in

another component. When the values from the other

component are returned the flag will be changed back to

False. If the GetValues method is invoked in a Linkable-

Component which is busy, this component will not progress

in time in order to obtain new values but will return values

based on already calculated values, for example using

extrapolation.

The communication between a river model and a

groundwater model is illustrated in Figure 9. The steps in

the sequence diagram are as follows:

1. The trigger component invokes GetValues in the

groundwater model in order to make the models run

until time tT.

2. The groundwater model cannot progress until it has

obtained the leakages from the river model. In order to

avoid deadlock situations the groundwater model sets

the internal variable isBusy to True.

3. The groundwater model invokes GetValues in the river

model in order to obtain the average leakages for each

groundwater grid element for the period corresponding

to its internal next timestep ([tG, tG–dtG]).

4. The river model sets its internal status to busy in

order to avoid deadlocks. This will not have any

impact in this particular configuration. However, if

the river model is used in other configurations this

action may be needed. Consequently, model com-

ponents should always set the internal status to busy

before invocation of GetValues.

5. The river model invokes GetValues in the groundwater

model in order to obtain the groundwater level at the

location of each river branch element for the time

corresponding to the end of the next timestep

(tR þ dtR).

6. Since the groundwater model is busy, it cannot invoke

GetValues in the river model, which means that it

cannot perform timesteps. Consequently, the returned

groundwater levels must be calculated by means of

extrapolation, based on previous calculated values.

7. The river model changes its busy status to False,

performs a timestep and increments the internal time.

8. Steps 4–7 are repeated until the internal time of the

river model has exceeded the time period for which

values were requested (tG þ dtG).

9. Leakages are returned.

186 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



10. The groundwater model changes its busy status to

False, performs a timestep and increments its internal

time.

11. Steps 2–10 are repeated until the internal time of the

groundwater model has exceeded the time period for

which values were requested by the trigger

component.

12. Final return and end of the simulation.

Most river models and groundwater models will use an

implicit numerical scheme internally. The link between the

two models can be regarded as semi-explicit because the

values passed from the river model to the groundwater model

are based on real calculations whereas the values passed from

the groundwater model to the river model are extrapolated.

Extrapolations are performed by the providing component,

which will enable the model component provider to use

extrapolation methods optimized for the particular domain

of the model (in this case, groundwater levels).

In some cases bi-directional linked systems may be

subject to numerical instabilities, numerical errors or mass

balance errors. The results from the simulation may also

change depending on the component to which the trigger is

linked. Consequently, configuring bi-directional linked

Figure 9 | Bi-directional linked groundwater model and river model.

187 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



systems requires in-depth knowledge of the underlying

physics and numerics of the linked models. Adjusting the

internal timestep length of the models, selecting the best

trigger component and selecting the best extrapolation

method are means of improving the results.

There will be situations where simple linking is

inadequate. For such situations, an iterative configuration

can be used. The OpenMI standard facilitates the creation

of control components, such as iteration controllers.

Control components are LinkableComponents (implement-

ing the ILinkableComponent interface), which means that

configurations including iteration controllers can be created

using the OpenMI configuration editor, for example.

LinkableComponents used with iteration controllers need

to implement one additional interface – the IManageState

interface (see Figure 5). The IManageState interface has

methods for saving and restoring states, thus enabling an

iteration controller to re-run a LinkableComponent from a

previously saved state. Details of control components are

given in the OpenMI Guidelines (Tindall et al. 2005).

MODEL MIGRATION

The OpenMI standard is basically a collection of interface

definitions. In order to make real model engines run and

exchange data these interfaces must be implemented using a

programming language. Within the HarmonIT project these

interfaces were defined in C# (.Net). A default implemen-

tation of each interface was also developed in a package

called OpenMI backbone and a utility package was

developed to assist the migration of existing model engines.

All implementations are available as open source (Source-

FORGE 2005).

Existing model applications typically follow the pattern

shown in Figure 4. The calculation core – the engine – is

typically implemented in Fortran, Pascal or C and compiled

to one executable file. Such engines may consist of

thousands of lines of code and many years may have been

spent on development and testing. Consequently, re-

implementation of such engines is not an option.

With this in mind we had, from the very beginning of

the development of the OpenMI standard, three important

requirements: (1) it must be easy to migrate existing models

(the time for migrating a model should be less than two

working months for even the most complicated models), (2)

the same model engine must be able to run both in its

normal environment and in the OpenMI environment and

(3) the amount of OpenMI-specific implementations in the

engine core should be as small as possible.

In order to meet these requirements an OpenMI

wrapper package was implemented to assist in model

migration. This package is implemented in C# and is

available as open source (SourceFORGE 2005). The

wrapper package is not part of the OpenMI standard and

consequently not required in order to create OpenMI-

compliant models. In this way the OpenMI standard

remains simple and leaves much freedom for those

migrating models to make their own design choices; at the

same time, the standard makes it easy to migrate a model for

those who choose to use the utilities packages.

The wrapper package provides a default implemen-

tation of the ILinkableComponent (class LinkableEngine)

interface, specifically aimed at the time-stepping type of

model. The wrapper package takes care of all book-keeping

functionality with respect to handling links, time-related

conversion and spatial transformations (by use of the

element mapper described above). When using the wrapper

packages for model migration, implementation must follow

the design pattern shown in Figure 10. Model migration will

typically follow the steps described below:

1. The engine core must be turned into a component, so

that it can be accessed from outside. If the engine is

programmed in Fortran, for example, and is compiled

into an executable file (EXE), this engine could be

changed so that it can be compiled into a DLL, which

can be accessed from outside through the Win32 API

(MyEngineDll in Figure 10).

2. The engine must be changed so that initialization,

performing a timestep and finalization are separate

functions that can be accessed from outside. Initializa-

tion includes reading input files (populating the model),

memory allocation and whatever model-specific actions

need to be completed before calculations start. The

function to perform a timestep triggers the model

engine to make a single timestep. The finalization

function takes care of engine-specific tasks that need to

188 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



be done after all calculations have been completed; this

typically includes de-allocation of memory and closing

output files.

3. The default implementation of the ILinkableCompo-

nent interface (LinkableEngine in Figure 10) in the

wrapper packages is a generic implementation that

suits most model engines of the time-stepping kind.

Implementation tailored to the specific model that is

being migrated is done in the MyEngineWrapper class

(Figure 10). The MyEngineWrapper class must

implement the IEngine interface (Figure 11). The

LinkableEngine class accesses MyEngineWrapper

through this interface. In practice, the implementation

of MyEngineWrapper is done by creating a new class,

subsequently using the development environment to

auto-generate the stub code for the IEngine interface.

When this has been done, the task is to fill in the

functionality for each function. For some functions,

such as the GetComponentID, the full implementation

can take place in the MyEngineWrapper class; for

other functions, interactions with MyEngineDll are

needed. The latter typically involves extension of the

API of MyEngineDll. It is usually advantageous to put

the bulk of the implementation into the MyEngine-

Wrapper class and only make small changes to the

engine core. In this way most OpenMI-specific

implementations can be done outside the engine core,

which then remains intact to be used for other

purposes.

For time-stepping model engines, the ILinkableEngine

interface (Figure 11) is more straightforward to implement

compared to the ILinkableComponent interface. For

example, the GetValues method defined in the IEngine

interfaces does not trigger any calculations; it simply

returns the current values for internal variables identified

by the method arguments ‘QuantityID’ and ‘ElementSetID’.

These identifiers can be recognized by the engine because

Figure 10 | Model engine wrapping design pattern.

Figure 11 | Model engine interface.

189 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



they are the same as those exposed by the engine though

the GetOutputExchangeItems method in the ILinkableEn-

gine interface.

It is important to note that the ILinkableEngine inter-

face is not part of the OpenMI standard. This interface is

used only if the wrapper package is chosen for the model

migration. This demonstrates how the standard tackles the

potentially conflicting demands of giving the model provi-

der the freedom to make the optimal implementation for a

specific model while, at the same time, making it easy to

migrate a model. By using the wrapper package, model

migration can be done quite fast but, since the implemen-

tation of the wrapper package is done generically, this

solution may not be optimal for every model engine. We

envisage that people will generally use the wrapper package

to the full extent the first time a model is migrated but, later

on, gradually change the implementations to be more

optimal for specific model engines.

A detailed description of the wrapper package is given

in Sinding et al. (2005) and guidelines for model migration

are given in the OpenMI Guidelines (Tindall et al. 2005).

CONCLUSIONS

The OpenMI prescribes a standardized way to access model

components. The OpenMI standard is defined by the use of

component interfaces. The OpenMI is intended to provide

opportunities rather than being a straitjacket. Consequently

the OpenMI interfaces have been made as simple as

possible, in order to leave as much room as possible for

the model provider to make the best solutions. We realize

that such a high level of freedom may also make the

standard difficult to use. Therefore, much effort has been

put into the associated documentation, guidelines, design

pattern and assisting software utilities and tools. In this way

the normally contradictory demands for flexibility and ease

of use have been tackled. Users can apply the standard

alone, with its high level of flexibility, or base their work on

the predefined design pattern and available software

utilities in order to make the task easier.

Standards are a means for enabling people to work

together. Standards like XML and HTTP are excellent

examples of this, with developers around the world

contributing tools and applications that use these standards

and a wide range of software packages becoming available

for end users. A standard will only become successful if it is

technically sound, if the number of people using the

standard reaches a critical level, and if the standard is

supported and continuously developed in order to meet the

demands that arise.

In order to make sure that the OpenMI is technically

sound, a large number of user cases have been tested, where

very complex model systems have been linked using the

OpenMI. The ease of use and usefulness of the OpenMI

have been tested in the proof-of-concept phase of the

HarmonIT project, by having eight different universities and

companies migrating and linking models using the software

tools and guidelines provided. The encouraging results from

this exercise were presented at the final HarmonIT work-

shop in Munich, where feedback for further improvements

was also provided.

OpenMI makes it possible to create software systems

for integrated catchment management by means of linking

available OpenMI-compliant models. These models may

come from different providers and the system builder can

choose whatever model is most suited for each specific

case, which means that high quality systems that represent

the underlying physics accurately can be developed.

Naturally, this is only possible if there is a wide variety of

OpenMI-compliant models available. Therefore one of the

main tasks for the HarmonIT project was to migrate about

20 different models, including some of the most widely

used commercial hydrological and hydraulic models. After

the release of OpenMI version 1.0, people outside the

development group have also started to migrate models

(e.g. Visual MODFLOW). The more available OpenMI-

compliant models there are, the more attractive it becomes

to use OpenMI, and we hope that this means that the

number of available OpenMI-compliant models will keep

growing.

It is important for the survival of OpenMI that it is being

supported and continuously developed to meet new

demands. The challenge is to ensure a balance between

keeping the standard static in order not to burden people

with demands for upgrading their components, yet still

develop and react to change requests. This will be the

responsibility of the OpenMI association that is currently

190 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007



being established. The OpenMI association will be an open

forum and we hope that people around the world will join

and contribute to the future of OpenMI.

OpenMI was developed with the aim of enabling the

dynamic linking of hydraulic and hydrological models.

However, it turned out that OpenMI can do much more

than that. The OpenMI can be used for any component

that can accept or provide data, which means that

databases, flat data files or even on-line data can be

turned into LinkableComponents and become an inte-

grated part of OpenMI configurations. Since the OpenMI

provides a standardized way to interact with model

components, we also see opportunities to develop tools

for auto-calibration, optimization and scenario manage-

ment. Such tools can, once developed, be seamlessly

applied with any OpenMI-compliant model. With such

tools available, even more powerful modelling systems can

be created for the benefit of end users and water manage-

ment decision-makers.

REFERENCES

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E. &

Rasmussen, J. 1986 An introduction to the European

Hydrological System-Systeme Hydrologique Euopeen, ‘SHE’,

2: structure of a physically-based, distributed modelling

system. J. Hydrol. 87, 61–77.

Gijsbers P., Brinkman R., Gregersen J., Hummel, S. & Westen S.

2005 The OpenMI Document Series: Part C The

org.OpenMI.Standard Interface Specification (version 1.0).

Available at: http://www.OpenMI.org.

Moore R., Tindall, I., Gijsbers, P., Fortune, D., Gregersen, J. &

Blind, M. 2005 OpenMI Document Series: Part A Scope for the

OpenMI (version 1.0). Available at: http://www.OpenMI.org.

Sinding, P., Gregersen, J., Gijsbers, P., Brinkman, R. & Westen, S.

2005 The OpenMI Document Series: Part F

org.OpenMI.Utilities Technical Documentation (version 1.0).

Available at: http://www.OpenMI.org.

SourceFORGE 2005 OpenMI Open Source. Available at: http://

sourceforge.net/projects/openmi.

Tindall, I., Gijsbers, P., Gregersen, J., Westen, S., Dirksen, F.,

Gavardinas, C. & Blind, M. 2005 OpenMI Document Series:

Part B Guidelines for the OpenMI (version 1.0). Available at:

http://www.OpenMI.org.

191 J. B. Gregersen et al. | OpenMI: Open Modelling Interface Journal of Hydroinformatics | 09.3 | 2007

http://dx.doi.org/10.1016/0022-1694(86)90115-0
http://dx.doi.org/10.1016/0022-1694(86)90115-0
http://dx.doi.org/10.1016/0022-1694(86)90115-0
http://dx.doi.org/10.1016/0022-1694(86)90115-0
http://www.openmi.org
http://www.openmi.org
http://www.openmi.org
http://sourceforge.net/projects/openmi
http://sourceforge.net/projects/openmi
http://www.openmi.org

	OpenMI: Open modelling interface
	&?tpacr=1;INT&?show [nucBreak];RODUCT&?show [/nucBreak];ION
	EXISTING MODEL SYSTEMS
	THE OPENMI
	LinkableComponent
	Link (what is exchanged)
	Quantity (what)
	ElementSet (where)
	DataOperation (how)
	ExchangeItem (what can be exchanged)
	Time
	GetValues

	EXAMPLE
	SPATIAL MAPPING
	BI-DIRECTIONAL LINKS
	MODEL MIGRATION
	CONCLUSIONS
	References


