Virtual Battery: An Energy Reserve Abstraction for Embedded Sensor Networks

Qing Cao, Debessay Fesehaye, Nam Pham, Yusuf Sarwar, Tarek Abdelzaher
2008 2008 Real-Time Systems Symposium  
This paper introduces the abstraction of energy reserves for sensor networks that virtualizes energy sources. It gives each of several applications sharing a platform the illusion of having its own private energy source. Energy virtualization is the next logical step in embedded systems after virtualizing communication links and CPU capacity. Energy virtualization has not been addressed in past sensor network literature because most current wireless sensor networks feature single-user
more » ... ns. To amortize deployment costs, future sensor networks, deployed in remote or hardto-access areas, will likely be leveraged by scientists from different disciplines, each having their independent application for their individual research purposes. Platforms, planned for such deployment, will be fitted with the union of sensors needed, but independent applications will share the remaining resources such as in-field storage and communication bandwidth, calling for quotas and isolation mechanisms. The most expensive resource shared in sensor networks is energy. This paper provides an energy isolation mechanism, called the virtual battery, that logically divides energy among applications to provide each its private energy reserve. An application can manage its private energy independently as if it were running alone on the platform. The application is terminated when its reserve is depleted. We implement and evaluate this abstraction on MicaZ motes running LiteOS. Our results show that the virtual battery mechanism succeeds at exporting the private reserve abstraction accurately and at a low overhead. 2008 Real-Time Systems Symposium 1052-8725/08 $25.00
doi:10.1109/rtss.2008.41 dblp:conf/rtss/CaoKPSA08 fatcat:34nzftkkcndebaesd5dka435k4