A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Extremal Problems for Independent Set Enumeration
2011
Electronic Journal of Combinatorics
The study of the number of independent sets in a graph has a rich history. Recently, Kahn proved that disjoint unions of $K_{r,r}$'s have the maximum number of independent sets amongst $r$-regular bipartite graphs. Zhao extended this to all $r$-regular graphs. If we instead restrict the class of graphs to those on a fixed number of vertices and edges, then the Kruskal-Katona theorem implies that the graph with the maximum number of independent sets is the lex graph, where edges form an initial
doi:10.37236/656
fatcat:2cpttadjura3rb65smlnf5kx2u