Machine-learning-assisted corpus exploration and visualisation [thesis]

Tim Repke
2022
Text collections, such as corpora of books, research articles, news, or business documents are an important resource for knowledge discovery. Exploring large document collections by hand is a cumbersome but necessary task to gain new insights and find relevant information. Our digitised society allows us to utilise algorithms to support the information seeking process, for example with the help of retrieval or recommender systems. However, these systems only provide selective views of the data
more » ... nd require some prior knowledge to issue meaningful queries and asses a system's response. The advancements of machine learning allow us to reduce this gap and better assist the information seeking process. For example, instead of sighting countless business documents by hand, journalists and investigator scan employ natural language processing techniques, such as named entity recognition. Al-though this greatly improves the capabilities of a data exploration platform, the wealth of information is still overwhelming. An overview of the entirety of a dataset in the form of a two-dimensional map-like visualisation may help to circumvent this issue. Such overviews enable novel interaction paradigms for users, which are similar to the exploration of digital geographical maps. In particular, they can provide valuable context by indicating how apiece of information fits into the bigger picture.This thesis proposes algorithms that appropriately pre-process heterogeneous documents and compute the layout for datasets of all kinds. Traditionally, given high-dimensional semantic representations of the data, so-called dimensionality reduction algorithms are usedto compute a layout of the data on a two-dimensional canvas. In this thesis, we focus on text corpora and go beyond only projecting the inherent semantic structure itself. Therefore,we propose three dimensionality reduction approaches that incorporate additional information into the layout process: (1) a multi-objective dimensionality reduction algorithm to jointly visualise se [...]
doi:10.25932/publishup-56263 fatcat:t3a3kvqsuvgp3lee56hvir73iu