Reconfigurable system for automated optimization of diverse chemical reactions

Anne-Catherine Bédard, Andrea Adamo, Kosi C. Aroh, M. Grace Russell, Aaron A. Bedermann, Jeremy Torosian, Brian Yue, Klavs F. Jensen, Timothy F. Jamison
2018 Science  
Chemical synthesis generally requires labor-intensive, sometimes tedious trial-and-error optimization of reaction conditions. Here, we describe a plug-and-play, continuous-flow chemical synthesis system that mitigates this challenge with an integrated combination of hardware, software, and analytics. The system software controls the user-selected reagents and unit operations (reactors and separators), processes reaction analytics (high-performance liquid chromatography, mass spectrometry,
more » ... ional spectroscopy), and conducts automated optimizations. The capabilities of this system are demonstrated in high-yielding implementations of C-C and C-N cross-coupling, olefination, reductive amination, nucleophilic aromatic substitution (SNAr), photoredox catalysis, and a multistep sequence. The graphical user interface enables users to initiate optimizations, monitor progress remotely, and analyze results. Subsequent users of an optimized procedure need only download an electronic file, comparable to a smartphone application, to implement the protocol on their own apparatus.
doi:10.1126/science.aat0650 pmid:30237351 fatcat:jmy32kooane2xoerasffny3kem