Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models

Gianluca Moro, Federico Di Di Luca, Davide Dardari, Giacomo Frisoni
<span title="2022-02-20">2022</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/taedaf6aozg7vitz5dpgkojane" style="color: black;">Sensors</a> </i> &nbsp;
This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar–obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and
more &raquo; ... machine learning (ML) methods—supervised and unsupervised, symbolic and non-symbolic—according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s22041656">doi:10.3390/s22041656</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/35214558">pmid:35214558</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8879265/">pmcid:PMC8879265</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/teetdgmkpbb73ogekww4gbylqq">fatcat:teetdgmkpbb73ogekww4gbylqq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220501110549/https://mdpi-res.com/d_attachment/sensors/sensors-22-01656/article_deploy/sensors-22-01656-v3.pdf?version=1645669475" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/1f/6e/1f6ee489d0c355b97a0fcd63b5687114365b13ee.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s22041656"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879265" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>