A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
An efficient ant colony optimization framework for HPC environments
2021
Applied Soft Computing
Combinatorial optimization problems arise in many disciplines, both in the basic sciences and in applied fields such as engineering and economics. One of the most popular combinatorial optimization methods is the Ant Colony Optimization (ACO) metaheuristic. Its parallel nature makes it especially attractive for implementation and execution in High Performance Computing (HPC) environments. Here we present a novel parallel ACO strategy making use of efficient asynchronous decentralized
doi:10.1016/j.asoc.2021.108058
fatcat:bweg2t6pjbhkhaqzb6mbw7apmm