A linearized robust model predictive control applied to bioprocess

S.E. Benattia, S. Tebbani, D. Dumur
2016 2016 IEEE 55th Conference on Decision and Control (CDC)  
This work deals with the problem of trajectory tracking for a nonlinear system with unknown but bounded model parameters uncertainties. First, this work focuses on the design of classical robust nonlinear model predictive control (RNMPC) law subject to model parameters uncertainties implying solving min-max optimization problem. Secondly, a new approach is proposed, consisting in approaching the basic min-max problem into a more tractable optimization problem based on the use of linearization
more » ... of linearization techniques, to ensure a good trade-off between tracking accuracy and computation time. The robust stability of the closed-loop system is addressed. The developed strategy is applied in simulation to a simplified macroscopic continuous photobioreactor model and is compared to the RNMPC controller. Its efficiency is illustrated through numerical results and robustness against parameter uncertainties.
doi:10.1109/cdc.2016.7798882 dblp:conf/cdc/BenattiaTD16 fatcat:gsg4gsduzrcfxdifk7mmv46pgy