A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
On the Mordell-Weil Groups of Jacobians of Hyperelliptic Curves over Certain Elementary Abelian 2-extensions

2009
*
Kyungpook Mathematical Journal
*

Let J be the Jacobian variety of a hyperelliptic curve over Q. Let M be the field generated by all square roots of rational integers over a finite number field K. Then we prove that the Mordell-Weil group J(M ) is the direct sum of a finite torsion group and a free Z-module of infinite rank. In particular, J(M ) is not a divisible group. On the other hand, if M is an extension of M which contains all the torsion points of J over Q, then J( M sol )/J( M sol )tors is a divisible group of infinite

doi:10.5666/kmj.2009.49.3.419
fatcat:mckvksx53vd5bowkwvgrfhf3rm