MEKK-3 Acts Cooperatively with NSY-1 in SKN-1-Dependent Manner against Oxidative Stress and Aging in Caenorhabditis elegans

Min Hwang, Chandani Shrestha, Shinwon Kang, Jiyoon Kim
2022 Biology  
Oxidative stress resulting from reactive oxygen species and other toxic metabolites is involved in human diseases, and it plays an important role in aging. In Caenorhabditis elegans, SKN-1 is required for protection against oxidative stress and aging. As p38 mitogen-activated protein kinase signaling is activated in response to oxidative stress, SKN-1 accumulates in intestinal nuclei and induces phase II detoxification genes. However, NSY-1, a well-known mitogen-activated protein kinase kinase
more » ... inase (MAPKKK) of C. elegans, acts as a partial regulator of the SKN-1-induced oxidative stress signaling pathway, suggesting that the regulator for optimal activation of SKN-1 remains unknown. Here, we report a MAPKKK, MEKK-3, as a new regulator required for full activation of SKN-1-mediated resistance against oxidative stress and aging. In RNA-interference-based screening, we found that the simultaneous knockdown of mekk-3 and nsy-1 significantly decreased the oxidative stress resistance and survival of SKN-1 transgenic worms. MEKK-3 was induced in response to oxidative stress. Mechanistic analysis revealed that double knockdown of mekk-3 and nsy-1 completely suppressed the nuclear localization of SKN-1. These results were reproduced in mutant worms in which SKN-1 is constitutively localized to intestinal nuclei. In addition, mekk-3 and nsy-1 were required for optimal induction of SKN-1 target genes such as gcs-1 and trx-1. These data indicate that MEKK-3 plays an essential role in the SKN-1-dependent signaling pathway involved in oxidative stress resistance and longevity by cooperating with NSY-1.
doi:10.3390/biology11101526 fatcat:pwbw74nt4natrclg6cxhloa5ha