Unscented Kalman filter-based method for spacecraft navigation using resident space objects

Matthew Driedger, Michael Rososhansky, Philip Ferguson
2020 Aerospace Systems  
The number of resident space objects (RSOs) in orbit has increased dramatically within the last 10 years. While RSOs pose a serious challenge to our continued use of space, these objects also provide an opportunity to improve on-orbit state estimation by detecting and identifying these objects using star trackers. While star trackers are currently used to determine the orientation of their host spacecraft, their utility could be expanded to both position and orientation estimation by harnessing
more » ... RSO detections. In order for RSO-based optical navigation to be commercially viable, a reliable filter covariance estimate is required. This paper introduces an Unscented Kalman Filter (UKF) for estimating an observing spacecraft's position and attitude based on RSO observations. To ensure that this filter is reliable, a new assessment technique is introduced where we compare the moving standard deviation and mean of the filter's estimate error with the predicted error based on the filter's covariance estimate. We demonstrate the utility of this assessment method by comparing the covariance trusts for our UKF and a previously developed Extended Kalman Filter.
doi:10.1007/s42401-020-00055-w fatcat:u2pxk4cdzbh5bn64w4jen2lknm