Parametric Alignment of Drosophila Genomes

Colin N. Dewey, Peter M. Huggins, Kevin Woods, Bernd Sturmfels, Lior Pachter
2006 PLoS Computational Biology  
The classic algorithms of Needleman--Wunsch and Smith--Waterman find a maximum a posteriori probability alignment for a pair hidden Markov model (PHMM). In order to process large genomes that have undergone complex genome rearrangements, almost all existing whole genome alignment methods apply fast heuristics to divide genomes into small pieces which are suitable for Needleman--Wunsch alignment. In these alignment methods, it is standard practice to fix the parameters and to produce a single
more » ... gnment for subsequent analysis by biologists. Our main result is the construction of a whole genome parametric alignment of Drosophila melanogaster and Drosophila pseudoobscura. Parametric alignment resolves the issue of robustness to changes in parameters by finding all optimal alignments for all possible parameters in a PHMM. Our alignment draws on existing heuristics for dividing whole genomes into small pieces for alignment, and it relies on advances we have made in computing convex polytopes that allow us to parametrically align non-coding regions using biologically realistic models. We demonstrate the utility of our parametric alignment for biological inference by showing that cis-regulatory elements are more conserved between Drosophila melanogaster and Drosophila pseudoobscura than previously thought. We also show how whole genome parametric alignment can be used to quantitatively assess the dependence of branch length estimates on alignment parameters. The alignment polytopes, software, and supplementary material can be downloaded at http://bio.math.berkeley.edu/parametric/.
doi:10.1371/journal.pcbi.0020073 pmid:16789815 pmcid:PMC1480539 fatcat:qrq66ady25aelhsaakfpgyqqyq