Learning symmetric causal independence models

Rasa Jurgelenaite, Tom Heskes
<span title="2008-01-29">2008</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/h4nnd7sxwzcwhetu5qkjbcdh6u" style="color: black;">Machine Learning</a> </i> &nbsp;
Causal independence modelling is a well-known method for reducing the size of probability tables, simplifying the probabilistic inference and explaining the underlying mechanisms in Bayesian networks. Recently, a generalization of the widely-used noisy OR and noisy AND models, causal independence models based on symmetric Boolean functions, was proposed. In this paper, we study the problem of learning the parameters in these models, further referred to as symmetric causal independence models.
more &raquo; ... present a computationally efficient EM algorithm to learn parameters in symmetric causal independence models, where the computational scheme of the Poisson binomial distribution is used to compute the conditional probabilities in the E-step. We study computational complexity and convergence of the developed algorithm. The presented EM algorithm allows us to assess the practical usefulness of symmetric causal independence models. In the assessment, the models are applied to a classification task; they perform competitively with state-of-the-art classifiers.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10994-007-5041-7">doi:10.1007/s10994-007-5041-7</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/boyegxqbmje6dfxecrkur24jla">fatcat:boyegxqbmje6dfxecrkur24jla</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180726071427/https://link.springer.com/content/pdf/10.1007%2Fs10994-007-5041-7.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/46/93/4693a850049f82668fc051f610da7fec764c9426.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10994-007-5041-7"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>