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ABSTRACT

This paper introduces neurite orientation dispersion and density imaging (NODDI), a practical diffusion MRI
technique for estimating the microstructural complexity of dendrites and axons in vivo on clinical MRI
scanners. Such indices of neurites relate more directly to and provide more specific markers of brain tissue
microstructure than standard indices from diffusion tensor imaging, such as fractional anisotropy (FA).
Mapping these indices over the whole brain on clinical scanners presents new opportunities for
understanding brain development and disorders. The proposed technique enables such mapping by
combining a three-compartment tissue model with a two-shell high-angular-resolution diffusion imaging
(HARDI) protocol optimized for clinical feasibility. An index of orientation dispersion is defined to
characterize angular variation of neurites. We evaluate the method both in simulation and on a live human
brain using a clinical 3T scanner. Results demonstrate that NODDI provides sensible neurite density and
orientation dispersion estimates, thereby disentangling two key contributing factors to FA and enabling the
analysis of each factor individually. We additionally show that while orientation dispersion can be estimated
with just a single HARDI shell, neurite density requires at least two shells and can be estimated more
accurately with the optimized two-shell protocol than with alternative two-shell protocols. The optimized
protocol takes about 30 min to acquire, making it feasible for inclusion in a typical clinical setting. We further
show that sampling fewer orientations in each shell can reduce the acquisition time to just 10 min with
minimal impact on the accuracy of the estimates. This demonstrates the feasibility of NODDI even for the

most time-sensitive clinical applications, such as neonatal and dementia imaging.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Dendrites and axons, known collectively as neurites, are pro-
jections of neurons. They are the cellular building blocks of the
computational circuitry of the brain. Quantifying neurite morphology
in terms of its density and orientation distribution provides a window
into the structural basis of brain function both in normal populations
and in populations with brain disorders. For example, the branching
complexity of the dendritic trees, measured in terms of dendritic
density, reflects the nature of their computation and hence their
function: the areas of the cortex with less complex dendritic
structures engage in the early stages of information processing
while the regions with more complex dendritic structures participate
in the later stages of processing (Jacobs et al, 2001). Neurite
morphology is also a key marker of brain development and aging.
An increase in the dispersion of neurite orientation distribution is
associated with brain development (Conel, 1939), whereas a
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reduction in the dendritic density is linked with the aging of the
brain (Jacobs et al, 1997). Changes in neurite morphology are
additionally implicated in numerous neurological disorders, including
multiple sclerosis (Evanglou et al, 2000), amyotrophic lateral
sclerosis (Bruijn et al, 2004), and Alzheimer's disease (Paula-
Barbosa et al., 1980). However, due to its reliance on scarcely
available postmortem tissue samples, the quantitative analysis of
neurite morphology, despite its importance, is not widely applied.
The development of a non-invasive imaging-based solution holds the
key to realize such quantification in vivo.

Diffusion magnetic resonance imaging (MRI) provides unique
insight into tissue microstructure and is arguably the most promising
candidate for in vivo quantification of neurite morphology. It works
by sensitizing MRI measurements to the displacement pattern of
water molecules undergoing diffusion. As the water displacement
pattern is influenced by tissue microstructure, by measuring this
displacement pattern, diffusion MRI is able to distinguish different
microstructural environments. In the case of neuronal tissues, during
the typical time scale of a diffusion MRI experiment, two kinds of
microstructural environments can be identified, which are character-
ized by either hindered or restricted diffusion (Assaf and Cohen,
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2000). Hindered diffusion refers to the diffusion of water with a
Gaussian displacement pattern. It characterizes the water in the
extra-cellular space defined by cellular membranes of somas and glial
cells. Restricted diffusion refers to the diffusion of water in restricted
geometries. It is characterized by a non-Gaussian pattern of
displacement and describes the water in the intra-cellular space
bounded for example by axonal or dendritic membranes. The
differentiation of intra- and extra-cellular water forms the basis of
measuring neurite morphology via diffusion MRI.

Currently, the standard clinical diffusion MRI technique is
diffusion tensor imaging (DTI) (Basser et al., 1994). This technique
provides sensitivity to tissue microstructure but lacks specificity for
individual tissue microstructure features (Pierpaoli et al., 1996). DTI
provides simple markers, such as mean diffusivity (MD) and
fractional anisotropy (FA), that are widely used as surrogate
measures of microstructural tissue change during normal brain
development and aging, or during the onset and progression of
neurological disorders (see, e.g., Salat et al. (2009) and Bodini and
Ciccarelli (2009) for reviews). However, despite their sensitivity,
these markers are inherently non-specific (Pierpaoli et al., 1996). For
instance, the observation of a reduction in FA may be caused by a
reduction in neurite density, an increase in the dispersion of neurite
orientation distribution, as well as various other tissue microstruc-
tural changes (Beaulieu, 2009). Hence, a change in these statistics
may not be attributed to specific changes in tissue microstructure.

Towards in vivo quantification of neurite morphology, the recent
trend in diffusion MRI is in developing more advanced techniques
that can measure tissue microstructure features directly (see Assaf
and Cohen (2009) for a review). A particularly successful approach,
pioneered by Stanisz et al. (1997), is the model-based strategy in
which a geometric model of the microstructure of interest predicts
the MR signal from water diffusion within. The authors propose a
model of white matter microstructure that consists of individual
compartments for glial cells, axons, and extra-cellular space. The glial
and axon compartments have restricted diffusion; extra-cellular
diffusion is hindered with apparent diffusivities calculated via a
tortuosity model. The model allows the exchange of water between
the intra-cellular and extra-cellular compartments.

Subsequent white matter models include the ball-and-stick model
(Behrens et al., 2003), which represents the intra-cellular compart-
ment as cylinders of zero radius and extra-cellular diffusion as
isotropic and unrestricted. The composite hindered and restricted
water diffusion (CHARMED) model (Assaf and Basser, 2005; Assaf et
al., 2004) represents the intra-cellular compartment as impermeable
parallel cylinders with a gamma distribution of radii. The signal for
the extra-cellular compartment comes from an anisotropic diffusion
tensor model. In the original model, the distribution of radii is fixed to
a biologically plausible distribution, but subsequent work (Assaf et al.,
2008) fits these parameters. Barazany et al. (2009) add a free-water
compartment necessary for in vivo imaging data. Alexander (2008)
reduces the CHARMED model to a single radius, and subsequently
Alexander et al. (2010) include tortuosity models and isotropically
restricted compartments, in a similar way to Stanisz et al. (1997), and
a free-water compartment as in Barazany et al. (2009), to obtain the
minimal model of white matter diffusion (MMWMD). Most recently,
Panagiotaki et al. (2012) construct a taxonomy of compartment
models for white matter including those above and a range of
intermediate and additional compartment combinations. They com-
pare them with each other and with various multi-exponential
models using fixed-brain data to demonstrate the need for both a
restricted axonal compartment and an isotropically restricted com-
partment as in Stanisz et al. (1997), Alexander et al. (2010).

Assaf and Basser (2005) demonstrate for the first time that the
CHARMED model can provide sensible maps of the volume fraction of
intra-cellular space, the axon density, in in vivo human brain imaging
on a clinical MRI scanner. However, by representing axons as parallel

cylinders, models such as ball-and-stick (Behrens et al., 2003),
CHARMED, MMWMD, and the entire hierarchy of compartment
models in (Panagiotaki et al., 2012) cannot recover the effect of
axonal-orientation dispersion due to bending and fanning of axon
bundles widespread throughout the brain (Biirgel et al., 2006; House
and Pansky, 1960). By relaxing this constraint, more recent models
(Kaden et al., 2007; Sotiropoulos et al., 2012; Zhang et al., 2011)
support a more realistic description of white matter beyond the most
coherently-oriented structures, such as the corpus callosum, and
provide an estimate of orientation dispersion.

Going beyond the modeling of white matter, Jespersen et al.
(2007) propose an analytic model of neurites that support the
modeling of both gray and white matter. Using a truncated spherical
harmonic series, the neurite model approximates an arbitrary
orientation distribution of dendrites and axons, which is essential
for modeling both low-to-moderately dispersed axons in white
matter and highly dispersed dendritic trees in gray matter. Using
data from ex vivo imaging of a baboon brain sample, the authors
demonstrate for the first time that both neurite density and its
orientation distribution can be quantified using diffusion MRI. However,
the imaging protocol consists of 153 diffusion-weighted images spread
over 17 b-values with the largest equal to 15,000 s/mm?, making it
impractical for clinical translation.

Despite the lack of clinically feasible imaging protocols, emerging
evidence suggests that, in both gray and white matter, neurite
morphology determined from diffusion MRI is comparable to
independent measures derived from histology. Jespersen et al.
(2010) show that neurite density estimates, determined using the
model in Jespersen et al. (2007), correlate more strongly with both
optical myelin staining intensity and stereological estimation of
neurite density using electronmicroscopy than with DTI-derived
markers. More recently, Jespersen et al. (2012) demonstrate that
neurite orientation distributions derived from diffusion MRI show
excellent agreement to those quantified using a quantitative Golgi
analysis. These recent findings are extremely encouraging and
motivate the current work.

The aim of this work is to develop a clinically feasible technique
for in vivo neurite orientation dispersion and density imaging, which
we refer to hereafter as NODDI. Our approach is to first choose a
model that is sufficiently simple, yet complex enough to capture the
key features of neurite morphology, then identify the optimal
acquisition protocol for such a model under scanner hardware and
acquisition time constraints typical in a clinical setting. Specifically,
NODDI adapts the orientation-dispersed cylinder model in Zhang et
al. (2011) to estimate only neurite density and orientation dispersion.
The acquisition protocol is determined using the experiment design
optimization in Alexander (2008) under an acquisition time con-
straint of 30 min. Using both synthetic and in vivo human brain data,
we assess the performance of the optimized protocol, in terms of the
accuracy and precision of its microstructure parameter estimates,
against alternative protocols.

The rest of the paper is organized as follows: the Materials and
methods section describes the NODDI tissue model, protocol
optimization, data acquisition, model fitting, and preprocessing; the
Experiments and results section gives the experimental design and
results; and the Discussion section summarizes the contribution and
discusses future work.

Materials and methods

This section specifies the NODDI tissue model and defines the
orientation dispersion index, which is NODDI's summary statistic for
quantifying angular variation of neurite orientation. It then details the
protocol optimization for this model, the resulting NODDI protocol,
and the alternative protocols for comparison. Finally, it describes the
acquisition of the in vivo imaging data, the synthesis of the simulated
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data, the model-fitting procedures, and the preprocessing of the
imaging data.

NODDI tissue model

NODDI adopts a tissue model that distinguishes three types of
microstructural environment: intra-cellular, extra-cellular, and CSF
compartments. Each affects water diffusion within the environment
in a unique way (Le Bihan, 1995) and gives rise to a separate
normalized MR signal. The full normalized signal A can be written as

A= (] _Viso)(vicAic + (] _Vic)Aec) + VisoAisov (1)

where A;c and v;. are the normalized signal and volume fraction of the
intra-cellular compartment; A is the normalized signal of the extra-
cellular compartment; and A;;, and vjs, are the normalized signal and
volume fraction of the CSF compartment. The tissue and signal model
for each compartment is detailed below.

Intra-cellular model

The intra-cellular compartment refers to the space bounded by the
membrane of neurites. We model this space as a set of sticks, i.e.,
cylinders of zero radius, to capture the highly restricted nature of
diffusion perpendicular to neurites and unhindered diffusion along
them (Behrens et al., 2003; Panagiotaki et al., 2012; Sotiropoulos et
al.,, 2012). The orientation distribution of sticks can range from highly
parallel to highly dispersed. This models the full spectrum of neurite
orientation patterns observed in brain tissue that include: 1) highly
coherently oriented white matter structures, such as the corpus
callosum; 2) white matter structures composed of bending and
fanning axons, such as the centrum semiovale; 3) the cerebral cortex
and subcortical gray matter structures characterized by sprawling
dendritic processes in all directions.

The normalized signal, A;, adopts the orientation-dispersed
cylinder model in Zhang et al. (2011) but is simplified for sticks,
such that

A = [of e @™ an, 2)

where q and b are the gradient direction and b-value of diffusion-
weighting, respectively; f(n)dn gives the probability of finding sticks
along orientation n; e *»@™" gjves the signal attenuation due to
unhindered diffusion along a stick with intrinsic diffusivity d, and
orientation n.

As in Zhang et al. (2011), the orientation distribution function
f : S>~R is modeled with a Watson distribution:

-1 2
fm) :MG,%,K) e 3)

where M is a confluent hypergeometric function, p is the mean
orientation, and K is the concentration parameter that measures the
extent of orientation dispersion about p.

The Watson distribution is chosen because it is the simplest
orientation distribution that can capture the dispersion in orienta-
tions (Mardia and Jupp, 1990). Compared to the truncated spherical
harmonic series in Jespersen et al. (2007), our choice trades the
generality in representing complex orientation distributions for the
simplicity in capturing the essence of orientation dispersion.
Furthermore, the Watson distribution provides a good representation
not only for high orientation dispersion seen in gray matter but also
for low orientation dispersion seen in the most coherent white
matter. In contrast, the truncated spherical harmonics series, with the
maximum order of spherical harmonics set typically to 2 or 4
(Jespersen et al., 2007), cannot approximate the most coherent
orientation distributions accurately (Zhang et al., 2011). Including

higher order terms increases the number of model parameters
significantly, which outweighs the gain in improved approximation.

Extra-cellular model

The extra-cellular compartment refers to the space around the
neurites, which is occupied by various types of glial cells and,
additionally in gray matter, cell bodies (somas). In this space, the
diffusion of water molecules is hindered by the presence of neurites
but not restricted, hence is modeled with simple (Gaussian)
anisotropic diffusion.

The normalized signal, A.., again adopts the extra-cellular signal
model of orientation-dispersed cylinders in Zhang et al. (2011), such
that

log Aec = —ba' ([ 2f(m)D(n)dn)q, 4)

where D(n) is a cylindrically symmetric tensor with the principal
direction of diffusion n, diffusion coefficients d, parallel to n and d,
perpendicular to n. The parallel diffusivity is the same as the intrinsic
free diffusivity of the intra-cellular compartment; the perpendicular
diffusivity is set with a simple tortuosity model (Szafer et al., 1995) as
d, =d,(1 —v;.), where vy is the intra-cellular volume fraction.

In the current implementation with the Watson distribution, the
parallel and perpendicular diffusivities of the apparent extra-cellular
diffusion tensor, denoted as d; and d |, take the following form
(Zhang et al., 2011):

d,n =dy—d, Vi(1-7y) (5)
/ 1+T1
d, =d—d, v 3 1, (6)

where, borrowing the definition from Jespersen et al. (2012),
T, = _f(]) we™ du/ﬂ) e du, (7)

which captures the effect of orientation dispersion on the apparent
diffusivities. Written in terms of tpe Dawson's integral (Abramowitz
and Stegun, 1972), F(x) = 1 /me ™ erfi(x), T; is equal to

1 1 3
2% T IF(VR)VR ®)

It varies from 1/3 for isotropically-dispersed orientations (k=0)
to 1 for strictly parallel orientations (k= ).

Egs. (5) and (6) demonstrate a significant difference between our
extra-cellular model and the earlier models such as ball-and-stick
(Behrens et al., 2003), CHARMED, and the neurite model in Jespersen
et al. (2007). Unlike these earlier models which treat the apparent
parallel and perpendicular diffusivities in the extra-cellular space as
independent free parameters, our model expresses them in terms of
the neurite morphology and the intrinsic diffusivity in a physically
plausible way. In particular, these parameters are now determined
not only by the neurite density, via the tortuosity model, but also by
the orientation dispersion of neurites, via the powder average in
Eq. (4). For instance, an increase in orientation dispersion will not
only yield a reduction of the intra-cellular anisotropy via Eq. (2) but
will also lead to a reduction of the extra-cellular anisotropy via a
reduction in the apparent extra-cellular parallel diffusivity and an
increase in the corresponding apparent perpendicular diffusivity.

CSF compartment

The CSF compartment models the space occupied by cerebrospinal
fluid and is modeled as isotropic Gaussian diffusion with diffusivity
diso-
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Orientation dispersion index

Here we redefine the orientation dispersion index first proposed in
Zhang et al. (2011) as

0D = %arctan(l/K). 9)

In Zhang et al. (2011), we defined the index simply as k, which is
less intuitive because it maps higher orientation dispersion to lower
values. The new definition addresses this issue. Furthermore, it
ranges from 0 to 1, making it more straightforward to visualize than x
which has an upper bound that is infinity. Fig. 1 illustrates the Watson
distributions for a range of OD values.

Protocol optimization

For the NODDI tissue model, an optimized protocol is derived
using the experiment design optimization procedure in Alexander
(2008). The procedure determines the optimal protocol for a set of a
priori model parameter settings and the hardware specification under
an acquisition time constraint. We choose the set of a priori model
parameters representative for both gray and white matter: intra-
cellular volume fraction v, = 0.3, 0.5, and 0.7, intrinsic free diffusivity
dy=1.7x10"3>mm?s~!, perpendicular extra-cellular diffusivity
d, =12x10"3,09%x1073, and 05x10 3 mm?s™!, k=0.5, 2, 8,
and 32. The hardware specification of the scanner used for the in vivo
imaging demonstration is given in Subject and data acquisition. The
acquisition time limit is set to 30 min during which the scanner can
acquire around 90 diffusion-weighted images with whole-brain
coverage.

NODDI protocol
The optimization procedure suggests dividing the measurements
into 2 HARDI shells with the b-values of 711 and 2855 s/mm?

0.84 l0.16]

Fig. 1. lllustration of a set of Watson distributions with the same mean orientation but
different orientation dispersion index: OD &{0.04,0.16,0.5,0.84,1.0}. The Watson
distribution is cylindrically symmetric, hence showing only the cross-sectional view
through the symmetry axis which coincides with its mean orientation. The sampled OD
values are chosen to correspond to the sampled concentration parameters used for
generating the synthetic data set as given in Table 2.

respectively. We choose to sample the higher b-value at twice the
angular resolution of the lower b-value to account for its higher signal
variation over the sphere due to its greater sensitivity to complex
microstructure configurations. The optimized protocol thus consists
of one shell with 30 gradient directions and b= 711 s/mm? and the
other with 60 directions and b=2855s/mm?. The protocol also
includes 9 b=0 images.

Protocols for comparison

We acquire two additional HARDI shells with intermediate b-
values and create alternative protocols by choosing from subsets of all
the acquired shells. The two extra HARDI shells are a b= 1000 s/mm?
shell with 30 directions and a b=2000s/mm? shell with 60
directions. All four HARDI shells share the same echo time (see
Subject and data acquisition). All the protocols are tabulated in
Table 1 and summarized below:

1. The four-shell protocol: Using all the available shells, this rich
protocol provides pseudo ground-truth parameter estimates for
quantifying the performance of the NODDI and alternative
protocols.

2. The two-shell protocols: These protocols, one of which is the
NODDI protocol (P14), are generated by choosing one 30-direction
and one 60-direction shell. They differ from one another only in
the choice of b-values.

3. The reduced-orientation-sampling (ROS) NODDI protocols: These
are versions of the NODDI protocol requiring even shorter
acquisition time. They are created by subdividing the orientations
of each of its two shells uniformly into equal partitions. The
optimal subdivision of the orientations is determined using the
algorithm described in Cook et al. (2007) and implemented in
Camino (Cook et al., 2006), which ensures that the orientations
within each subset are as uniformly distributed as possible.

4, The one-shell protocols: These represent the typical clinical
protocols for diffusion tensor imaging.

Subject and data acquisition

Subject

Test data for in vivo imaging come from a healthy human volunteer
(male, 35 years old). The subject was scanned with informed consent
and the approval of the local research ethics committee.

Data acquisition
In vivo imaging is conducted on a clinical 3T Philips Achieva
system with |G|me = 65mT/m. The HARDI shells are acquired using a

Table 1

The list of imaging protocols used for evaluation. The b-values are expressed
in the unit of s/mm?. The number of sampled orientations for a particular b-
value is shown in parentheses. The NODDI protocol (P14) and its reduced-
orientation-sampling (ROS) versions (S1-2, T1-3) are highlighted. S1 and
S2 denote the ROS subsets from splitting the NODDI protocol, into two
halves. Similarly, T1, T2, and T3 denote the ROS subsets from splitting the
NODDI protocol into three equal partitions.

Protocol Settings

Pall/All The full data set

P1 b=711 (30)

P2 b=1000 (30)

P3 b=2000 (60)

P4 b=2855 (60)

P13 b=711 (30) and b= 2000 (60)
P14 b=711 (30) and b=2855 (60)
P23 b=1000 (30) and b= 2000 (60)
P24 b=1000 (30) and b= 2855 (60)
S1/S2 b=711 (15) and b= 2855 (30)
T1/T2/T3 b=711 (10) and b=2855 (20)
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pulsed-gradient spin-echo (PGSE) diffusion-weighted imaging (DWI)
sequence with axial echo-planar imaging (EPI) readout. Different b-
values are achieved by fixing the gradient pulse width 6 to 17.5 ms
and the pulse separation A to 37.8 ms while varying the gradient
strength which takes the values 31.9, 37.8, 53.4, and 63.8 mT/m. The
EPI readout uses a matrix size of 112 x 112 over a field of view (FOV)
of 224 x 224 mm? and slice thickness of 2 mm, resulting in isotropic
voxels of 2x2x2 mm?>. The echo time TE =78 ms and the repetition
time TR=12.5s are the same for all measurements. The signal to
noise ratio (SNR) in white matter at b=0 is about 20. A total of 50
slices are acquired to cover the whole brain. The total scanning time
for the NODDI protocol is about 25 min, with another 25 min for the
two additional HARDI shells with intermediate b-values.

Synthetic data

To evaluate the NODDI and alternative protocols using data with
known ground-truth tissue microstructure, we simulate MR signals
from the orientation-dispersed white matter model described in
Zhang et al. (2011). We choose this model because not only can it
generate signals for tissues with different neurite density and
orientation dispersion, it also supports the prescription of realistic
axon diameter values with its axon diameter parameter a. The latter
enables us to assess the effect of approximating neurites as sticks.

Specifically, to simulate both gray and white matter, we set the
true model parameter values to typical values for both tissue types.
The set of values for each model parameter are tabulated in Table 2.
We study each combination for a total of 80 different microstructural
configurations. To account for potential orientation bias, we construct
250 instantiations of each configuration that differ from one another
only in their mean orientations p, which are sampled uniformly over
the sphere. For each instantiation of each configuration, we
synthesize the corresponding MR data using the 4-shell protocol
and add synthetic Rician noise to match the SNR of the in vivo data.

Model fitting

Model parameters
The complete set of parameters for the NODDI model is

* Vi intra-cellular volume fraction

* d,: intrinsic free diffusivity

* K: concentration parameter of Watson distribution
» u: mean orientation of Watson distribution

* Vjso: isotropic volume fraction

* djs: isotropic diffusivity.

As in Alexander et al. (2010) and Zhang et al. (2011), the
diffusivities are fixed to their respective typical values in vivo:
d;=17x10"3mm?s~ 'and d;;, =3.0x 10~ > mm? s~ . The remain-
ing parameters are estimated from the fitting procedure described
next. The estimated k is then used to compute OD using Eq. (9).

Fitting routine

We fit the model to data with an adapted version of the routine
described in Alexander et al. (2010). The procedure determines the
maximum likelihood estimates of the parameters, using a Rician noise

Table 2
Ground-truth parameter values for the synthetic tissue substrates.

Parameter Ground-truth values

Vie {0.2,0.4, 0.6, 0.8}

Viso {0.0}

a {05, 1, 2, 4}um

K {0,0.25, 1, 4, 16}

n 250 uniformly distributed orientations

model, with the Gauss-Newton nonlinear optimization technique.
The starting point for the nonlinear optimization is obtained from an
initial brute-force search over a coarse and regular grid of physically
plausible settings.

The only change we make is the omission of the additional MCMC
procedure in Alexander et al. (2010). Although important for
estimating weak parameters like the axon diameter index in
(Alexander et al., 2010), for the NODDI model, the MCMC has a
negligible effect on the accuracy of our fitted model parameters. Its
removal reduces the computation time dramatically, making param-
eter estimation over the whole-brain practical. On a standard
workstation with two quad-core 3.0 GHz Intel processors, by splitting
the computation over 8 cores, the whole brain fitting requires no
more than 3 h.

Preprocessing

For the in vivo brain data, we manually delineate a binary mask
defining the brain parenchyma using ITK-SNAP (Yushkevich et al.,
2006). The brain mask defines the voxels for fitting with the routine
described above.

To help identify overall trends in the microstructure parameter
estimates for different brain tissues, we further segment the brain
parenchyma into partitions of gray and white matter and CSF. We
choose a simple segmentation procedure adequate for the purpose of
assessing broad trends. Specifically, we define the CSF partition as the
voxels with mean diffusivity, derived from the diffusion tensor fit to
the full imaging protocol, above 80% of d;s, the expected value for
CSF. For the remaining voxels, the gray matter partition is defined as
the voxels with linearity (Westin et al., 2002) below 0.2, also
estimated from the diffusion tensor fit. The rest is then classified as
the white matter partition.

Experiments and results

This section describes the synthetic and in vivo human data
experiments for evaluating the performance of NODDI. The experi-
ments are designed to quantify its accuracy and precision in
estimating microstructure parameters with both the optimized and
alternative protocols.

Synthetic data experiment

Design

We fit the NODDI tissue model to the subsets of the four-shell
synthetic data. The subsets are defined in Table 1 and represent the
NODDI and alternative protocols. The accuracy and precision of the
microstructure parameter estimates from each protocol are assessed
against the known ground-truth.

Results for intra-cellular and isotropic volume fractions

Fig. 2 plots the statistics of the estimated intra-cellular volume
fractions v, for different protocols. The figure illustrates the first key
result of this work, that although v;. cannot be estimated with the
protocols using a single shell, it can be estimated with the ones using
just two shells. Observe that the single-shell protocols consistently
estimate vj. poorly, with both large upward bias and high variance,
for the entire range of tested values. In contrast, all the multi-shell
protocols estimate the v;. accurately and precisely, with only a slight
upward bias. As expected, the protocol using all four shells results in
the smallest bias and variance. The NODDI protocol (P14) and the
other two-shell protocols are the next best. Here, the NODDI protocol
does not show any appreciable advantage over the alternatives but
does not demonstrate any disadvantage either.

The more surprising result is that the ROS-NODDI protocols
perform almost as well as the NODDI protocol itself, with only a
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Fig. 2. Statistics of the estimates of the intra-cellular volume fraction v;. from the synthetic data experiment using different protocols. For each of the four ground-truth v;. values,
the statistics are pooled over the tissue configurations with that v value and shown in its respective panel. In its panel, we plot, for each protocol, the mean and standard deviation
of v;. estimates derived from the corresponding set of tissue configurations that vary in axon diameters, orientation dispersions, as well as mean orientations. The ground-truth

value is indicated with a dashed line. The key to the protocols is in Table 1.

modest increase in the bias and variance. In particular, the ROS-
NODDI protocols T1-3 collect no more orientations than any of the
single-shell protocols. But by distributing these measurements over
two shells, they can consistently estimate v;. while the single-shell
protocols cannot. Putting these observations together, it is evident
that multi-shell protocols hold an advantage over their single-shell
alternatives and that this advantage can be attributed solely to the
use of multiple shells, rather than to any differences in orientation
sampling density or SNR.

A similar pattern emerges when examining the statistics of the v,
estimates as shown in Fig. 3. The single-shell protocols result in both
large upward bias and high variance, except for the highest v. The
multi-shell protocols on the other hand lead to much smaller upward
bias and variance.

The biases in v;. and v, both increase as v;. decreases. This is
expected because smaller v leads to larger and less anisotropic
extra-cellular compartment, making the CSF contamination more
difficult to separate from the neurite compartments.

Results for orientation dispersion and mean orientation

Fig. 4 plots the statistics for the orientation dispersion index OD.
The figure illustrates the second key result, that OD can be estimated
with protocols containing just a single shell. Overall, all the protocols

demonstrate a similar level of performance. The four-shell protocol
outperforms the others as expected but not by a large margin. The
single-shell protocols P3 and P4 compare favorably to the two-shell
protocols, suggesting that it is not essential to sample multiple b-
values for estimating OD accurately.

The bias and variance of OD estimates depend primarily on the
ground-truth value of OD itself. Specifically, when OD is low, below
0.5 in particular, the bias and variance are both very small; when OD
is high, equal to or above 0.5, the variance increases substantially.
When OD is very large, equal to or about 0.8, there is also a significant
increase in negative bias. The dependence of the bias on the ground-
truth value of OD mirrors the noise-induced bias in the estimate of FA
(Jones and Basser, 2004; Pierpaoli and Basser, 1996): for low FA,
corresponding to high OD, the bias is negative and its magnitude
increases as the ground-truth value of FA decreases. Just as in DTI, this
is unlikely to be a serious practical limitation. As Fig. 1 illustrates, the
orientation distributions corresponding to very large ODs are not very
different from one another and the high variance in its estimate
simply reflects the lack of difference.

Despite the overall similarity in the performance across the
protocols, some differences can be seen. In particular, when OD is
high, the relative performance of a protocol appears to depend
primarily on the number of sampled orientations rather than on the
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with identical v as defined in Fig. 2. Because the ground-truth value of v, is O for all the substrates, the dashed line used to indicate this value is obscured by the x-axis.

number of shells. On one hand, the effect of orientation sampling can
be seen most clearly by comparing the NODDI and ROS-NODDI
protocols. The latter perform worse than the NODDI protocol itself,
with the level of performance degradation proportional to the level of
the orientation sampling reduction. On the other hand, the minimal
dependence on the number of shells can be seen by comparing the
ROS-NODDI protocols T1-3 to the single-shell protocols P1 and P2.
These two groups of protocols have the same number of orientations
and show similar level of performance, despite having different
numbers of shells. When OD is low, the only notable observation is
that P1 and P2 are the worst performers. Again, a comparison to T1-3
suggests that sampling higher b-values is important for OD.

Fig. 5 plots the statistics for the estimates of the mean orientation
1, using the 95% cone of uncertainty (Jones, 2003). Similar to the main
finding for orientation dispersion, the figure shows that the mean
orientation can also be estimated with just one shell. Overall, all the
protocols perform to similar levels of accuracy and precision that
depend primarily on the value of OD. When OD is low, the mean
orientation can be estimated accurately. But as OD increases, it
becomes more difficult to estimate. At the extreme, when OD is equal
to 1, the mean orientation is no longer defined and as expected, the
cone of uncertainty takes its extreme value of 90°. This dependence
on OD is unsurprising and corresponds to the finding by Jones (2003)
that the cone of uncertainty increases as the anisotropy decreases. As
for orientation dispersion, difference in performance across the

protocols is influenced more by difference in orientation sampling
than by b-value.

Dependency on axon diameters

Estimates for all the microstructural parameters have minimal
dependency on the axon diameters. This is assessed by grouping the
tissue configurations according to their axon diameters and comput-
ing for each group the mean and standard deviation of the estimation
error in each NODDI parameter. Using intra-cellular volume fraction
as an example, for different axon diameters, the largest difference in
the mean estimation error is less than 0.005 and the standard
deviations for different axon diameters are almost identical.

In vivo human brain data experiment

Design

In the in vivo human data experiment, we use the microstructure
parameter estimates derived from the four-shell protocol as the
pseudo ground-truth and assess the accuracy and precision of the
corresponding estimates computed from both the NODDI and
alternative protocols.

Whole-brain parameter maps
Figs. 6 and 7 provide the whole-brain maps of the microstructure
features estimated using the NODDI tissue model with the four-shell
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Fig. 4. As in Fig. 2 but plotting the statistics of the estimates of orientation dispersion index OD. Different from Fig. 2, the tissue configurations are grouped according to their values

of OD, which are specified via the concentration parameter .

protocol. They are shown alongside the FA map, derived from fitting
the diffusion tensor model to the same data, to illustrate qualitatively
the utility of microstructure features for disentangling the factors
contributing to the variation in FA across different anatomical regions
of the brain.

The parameter maps from the NODDI model exhibit a spatial
pattern of tissue distribution consistent with the known brain
anatomy. The map of v, shows the expected pattern of neurite
density (Jespersen et al., 2010). It is lower in gray matter than in
white matter; it takes its highest values in the major white matter
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Fig. 5. As in Fig. 4 but plotting the statistics of the estimates of mean orientation p, using the 95% cone of uncertainty (Jones, 2003). The ground-truth cone of uncertainty is zero.

tracts, such as the corpus callosum and the internal capsules. The map
of OD demonstrates a trend that is similarly expected. It is higher in
gray matter than in white matter; it takes its lowest values in the
corpus callosum. This is also true for the map of v, which takes its
highest values for the expected CSF regions, such as the ventricles.
The visual comparison of the FA map to the v, and OD maps
suggests that FA is primarily sensitive to OD and less so to v;.. The

sensitivity of FA to OD can be seen most clearly from examining the
white matter. While v does not vary substantially within the white
matter, OD and FA exhibit significant regional variations that are
inversely correlated with each other. At one end of the spectrum, in
the corpus callosum where the axons are the most coherently-
oriented, the lowest values of OD correspond to the highest values of
FA. At the other end, in parts of the centrum semiovale, such as the
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Fig. 6. Maps of RGB-encoded principal direction p, FA, orientation dispersion index OD, intra-cellular volume fraction v, and isotropic (CSF) volume fraction v, computed using
the four-shell data, showing every 4th slice of the inferior half of the brain. Please refer to the text for the explanation of the regions highlighted with dashed ellipses.

highlighted region on slice 30 in Fig. 7, where there are significant
fanning and crossing of axons, the highest values of OD coincide with
the lowest values of FA, whereas v;. remains high throughout.
Although less apparent, many regional FA variations are associ-
ated with variations in both OD and v;.. We highlight two examples
of such areas in Fig. 6 on slice 6 and 22 respectively. In both regions,
changes in FA are accompanied with changes in both OD and v;.. This
illustrates that the two main factors contributing to FA can be
disentangled with NODDI, allowing them to be studied separately.

Parameter correlations

Figs. 8 and 9 demonstrate the relationship between FA and the
NODDI microstructure parameters, v; and OD, quantitatively using
scatterplots. The scatterplots are computed separately for the gray
and white matter regions defined in Preprocessing. For both tissue
types, FA shows a strong negative correlation to OD, consistent with
the visual assessment above. For the white matter, FA exhibits a
weaker positive correlation to v;, which is not apparent from visual
inspection. This combination of results suggest that, although the
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Fig. 7. As in Fig. 6 but for the superior half of the brain.

orientation dispersion is the most significant factor in determining
the FA value, the neurite density also plays a non-negligible role.

To visualize the specific dependency of FA on v;. and OD, in Fig. 10
we plot the relationship between OD and v, among the voxels with
similar FA values. The figure confirms that, for both tissue types, a
particular value of FA in tissue can be achieved by different
combinations of v;c and OD. Furthermore, it reveals a sensible positive
correlation between the two microstructure parameters, ie., two
voxels can have the same FA value as long as the one with the larger
value of v also has the larger OD. Moreover, a small change in OD
needs to be compensated with a much larger change in vy, which is
consistent with the observed relative sensitivity of FA to v, and OD.

Visual assessment of protocol performance

Figs. 11 to 13 illustrate the parameter estimates from different
protocols using a representative axial slice, slice 26 in Fig. 7. The
observations from visual inspection agree with the two key results
from the synthetic data experiment. In particular, Figs. 11 and 12 are
consistent with the result concerning the two volume fraction
parameters, i.e., that they can be estimated using the two-shell
protocols, including the ROS-NODDI protocols, but not using the
single-shell protocols. The maps of v;. and v, using the two-shell
protocols show close resemblance to those using the four-shell
protocol. In contrast, the maps of v;. using the single-shell protocols
have little resemblance to the one using the four-shell protocol and
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Fig. 8. Scatterplots of FA vs v;. for gray (left) and white (right) matter.

do not differentiate the gray matter from the white matter. The
single-shell protocols estimate vj, slightly better than v;.. The maps
of v;s, vary from being very noisy but not significantly biased for low
b-values (P1 and P2) to being substantially biased for high b-values
(P3 and P4).

Fig. 13 confirms the result concerning the orientation dispersion
parameter, i.e., that it can be estimated using just a single shell. The
OD maps using both the single-shell and two-shell protocols are of
very similar quality to the one using the four-shell protocol.

Quantitative assessment of protocol performance

To quantitatively confirm the observations from the visual
assessment above, Figs. 14 to 17 plot the bias statistics of each
microstructure parameter estimates from each protocol with respect
to the four-shell protocol. These statistics are computed separately for
the gray and white matter regions defined in Preprocessing. This is to
account for the observation from the synthetic data experiment that
the accuracy and precision of orientation dispersion and pu depend
strongly on the value of OD, which is significantly different between
the gray and white matter.

The error statistics in estimating v;. and v, shown in Figs. 14 and
15 show overall good agreement with the synthetic data experiment

Orientation Dispersion

FA

finding for these two parameters. It is evident that, while the two-
shell protocols provide accurate estimates of these parameters, the
single-shell protocols give poor estimates that have large positive bias
and variance. The errors for gray matter are particularly pronounced,
consistent with the synthetic data experiment finding that the single-
shell protocols estimate these parameters most poorly when v is
low, which is the case in the gray matter.

These statistics also reveal something different from the synthetic
data experiment. While the synthetic data experiment finds no clear
difference among the two-shell protocols, the result here demon-
strates otherwise. In particular, it shows that the NODDI protocol
(P14) results in the smallest bias and variance, followed closely by the
ROS-NODDI protocols. Among the two-shell protocols, the one with
the largest bias is P13 and the one with the largest variance is P24.

The error statistics in estimating OD and u, shown in Figs. 16 and
17, also demonstrate good consistency with the synthetic data
experiment finding for these two parameters. It is clear that all
protocols estimate these parameters to a similar accuracy, especially
for white matter, suggesting that the number of shells is not the key
factor that influences their estimation. For gray matter, consistent
with the observation from the synthetic data experiment, the much
larger OD leads to OD estimates that have larger variance and p

Orientation Dispersion

Fig. 9. Scatterplots of FA vs OD for gray (left) and white (right) matter.
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Fig. 10. Scatterplots of v, vs OD for gray (left) and white (right) matter. To assess the relationship between v;. and OD for the voxels with similar FA values, we stratify the voxels
into smaller groups each of which has their FA values falling between a narrow range specified in the legend.

estimates that are more biased. As is the case for the synthetic data
experiment, the single-shell protocols and the ROS-NODDI protocol
lead to slightly more biased estimates of OD and more biased
estimates of p.

Discussion

In summary, this paper proposes and demonstrates NODDI, a
practical technique for imaging neurite density and orientation
dispersion on standard clinical MR systems. The technique combines
the experiment design optimization in Alexander (2008) with a
simple compartment model to identify an acquisition protocol that is
straightforward to implement and sufficiently economical for clinical
applications. The NODDI protocol consists of just two HARDI shells,
the b-values of which can be easily achieved on clinical systems. The

Intra-cellular
Volume Fraction

2 shells subset

standard version acquires a whole-brain scan with 2 mm isotropic
resolution in about 25 min. By reducing angular resolution, the
acquisition time can be shortened to under 10 min. Although this
leads to the expected reduction in the accuracy of estimating the
dominant fiber orientation, it has minimal effect on the estimation
accuracy of the other neurite morphology parameters.

The key ingredient for the experiment design optimization is the
NODDI tissue model, which simplifies the model in Zhang et al.
(2011) to focus on the parameters that we can estimate reliably with
a practical acquisition protocol. There, an orientation-dispersed white
matter model is proposed to simultaneously estimate the axon
diameter index (Alexander et al., 2010) and the orientation
dispersion of axons. Estimating axon diameter, however, has onerous
demands for both acquisition and fitting (Alexander et al., 2010; Assaf
et al., 2008; Barazany et al., 2009; Zhang et al., 2011). Even the

Fig. 11. Maps of intra-cellular volume fraction v;. from different protocols for visual comparison. For the ROS-NODDI protocols, only one example from each protocol is shown.



H. Zhang et al. / Neurolmage 61 (2012) 1000-1016

Isotropic (CSF)
Volume Fraction

2 shells subset

1013

Fig. 12. As in Fig. 11 but showing maps of isotropic (CSF) volume fraction v;s.

economical protocol for in vivo axon diameter estimation (Alexander
et al,, 2010; Zhang et al., 2011), also developed using the experiment
design optimization, requires an hour to acquire half a brain at half
the spatial resolution of the NODDI protocol, making it challenging for
routine clinical use. Nevertheless, the demonstration of orientation
dispersion estimation in Zhang et al. (2011) motivates us to
determine a much more economical protocol by modeling the axons
as sticks rather than cylinders, i.e., by abandoning the axon diameter

Orientation
Dispersion

2 shells subset

parameter. The simplified model not only leads to a clinically feasible
protocol but also requires just a fraction of the computation time for
estimating the model parameters.

Using NODDI, we demonstrate for the first time that it is possible
to image both neurite density and orientation dispersion over the
whole brain in a live subject, on a clinical scanner and in a clinically
feasible acquisition time. This enables the disentanglement of two
major factors contributing to FA and their separate analysis. By

Fig. 13. As in Fig. 11 but showing maps of orientation dispersion index OD.
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Fig. 14. Mean and standard deviation of the estimation errors in v, using various protocols when benchmarked against the estimates using the full protocol. The error statistics are

calculated separately for gray matter (left) and white matter (right).

directly estimating the volume fraction of CSF, we are able to
minimize the confounding effect of CSF-contamination, which
affects periventricular white matter structures, such as the corpus
callosum and the fornix (Metzler-Baddeley et al., 2012). Further-
more, we illustrate the importance of distangling these two factors
with their independent influence on FA (Fig. 10). We additionally
show that FA is influenced more strongly by orientation dispersion
than neurite density, which is in good agreement with Jespersen et
al. (2012).

We evaluate the accuracy and precision of NODDI extensively,
using both simulated and in vivo data experiments, with the
optimized protocol as well as with the alternative two-shell and
single-shell protocols. The results from both experiments consistently
demonstrate two novel findings in their own right. First, the neurite
density cannot be estimated with single-shell data, regardless of the
choice of b-value, but can be estimated with just two shells using
clinically feasible b-values. Moreover, the comparison between the
NODDI protocol and several alternative two-shell protocols demon-
strate that the method does not depend strongly on the precise choice
of the two b-values. Hence the proposed framework can be readily
applied to existing multi-shell HARDI data sets acquired for other
techniques, such as the CHARMED protocol (Assaf and Basser, 2005;
De Santis et al.,, 2011) and hybrid diffusion imaging (HYDI) (Wu and
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Alexander, 2007), although the ideal protocol, for future studies, has
just two shells with moderate b-values. Although we use a system
with unusually high gradient strength of 65 mT/m here, NODDI
should achieve similar performance on scanners with more standard
(|Gmax| = 40mT/m). Reducing |G| in the optimization reported in
the Protocol optimization section produces an optimized NODDI
protocol still with two shells: the 30-direction shell has a b-value of
about 700 s/mm? and the 60-direction shell has a b-value about
2000 s/mm?. The reduced |Gimax| shifts the balance of the trade-off
between the b-value and SNR toward lower maximum b-value to
minimize the increase in TE: TE increases to 85 ms, which reduces
SNR by about 10%. Simulations suggest the difference in protocols has
minimal effect on the NODDI parameter estimation (see Supplemen-
tary material). Second, the neurite orientation dispersion can be
estimated with just one shell for sufficiently high b-values. In
particular, this shows that even the standard clinical acquisition,
single shell with b= 1000 s/mm?, can provide good estimates of the
orientation dispersion, but lacks sensitivity for the neurite density. An
important practical implication is that models such as Kaden et al.
(2007), Sotiropoulos et al. (2012), and ours can be used with existing
single-shell data, but further analysis should only include the
orientation dispersion parameter, as the neurite density parameter
is unreliable without the second shell.
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Fig. 15. As in Fig. 14 but plotting the error statistics of V.
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Fig. 16. As in Fig. 14 but plotting the

The in vivo data experiment uses the parameter estimates from
the four-shell protocol as the ground-truth. The results from the
synthetic data experiment justify this choice. CHARMED and HYDI
include shells with much higher b-values. However, simulation
experiments using a six-shell protocol including two higher b-
values of 5000 s/mm? and 6000 s/mm? show reduced performance
compared to the four-shell protocol with the same total number of
measurements (see Supplementary material). The loss of signal due
to increased TE to accommodate the larger b-values counteracts the
potential benefits.

NODDI offers an opportunity to extend the application of neurite
morphology quantification from being confined within the realm of
postmortem histology to becoming a part of routine clinical practice.
Jespersen et al. (2010) demonstrate a strong correlation of neurite
density with the intensity of myelin stain under light microscopy,
indicating that neurite density may be a useful marker for demyelin-
ation disorders, such as multiple sclerosis. The weaker dependence of
FA to neurite density further suggests that neurite density may be a
more sensitive marker of pathology than FA and may highlight early
signs of demylelination before FA can.

The orientation dispersion index of neurites has two broad
applications. In white matter, the orientation dispersion index
quantifies the bending and fanning of axons, which is useful for
mapping brain connectivity (Kaden et al., 2007). In particular, it will
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error statistics of orientation dispersion.

help determine whether many voxels currently classified as having
crossing fibers (Jeurissen et al, 2010) may in fact consist of
orientation-dispersed fibers with only a single dominant orientation.
Mapping orientaton dispersion over time may shed new light into the
process of brain development (Jespersen et al., 2012). In gray matter,
the index quantifies the pattern of sprawling dendritic processes. This
provides a more direct marker of gray matter complexity than, for
example, the measure derived from model-based bootstrapping
proposed in Haroon et al. (2010), which has the potential in
differentiating neurodegenerative disorders of varying severity
(Haroon et al., 2011).

NODDI can be improved in a number of ways. First, in the current
demonstration, the NODDI tissue model currently parametrizes the
neurite orientation distribution with Watson distribution. This has
limited accuracy in modeling orientation distributions that are not
cylindrically symmetric, such as in the regions with fanning or
crossing axons. Although beyond the scope of the present work,
NODDI extends naturally to model these more complex orientation
distributions using, e.g., the Bingham distribution (Mardia and Jupp,
1990) for fanning configurations and mixtures of Watson or Bingham
distributions for crossing configurations. Earlier work (Kaden et al.,
2007; Sotiropoulos et al., 2012) demonstrates the feasibility of such
an extension. The resulting model selection problem can be solved
using a variety of existing strategies with many successful examples
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Fig. 17. As Fig. 14 but plotting the error statistics of u.
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in the diffusion MRI literature (Alexander et al., 2002; Behrens et al.,
2007; De Santis et al., 2011; Hosey et al., 2005; Kaden et al., 2007;
Sotiropoulos et al., 2012). Second, the NODDI protocol is currently
derived without explicitly optimizing for the orientation sampling
scheme across multiple HARDI shells. Minor improvements may
come from multi-shell orientation sampling optimization approaches,
such as those recently proposed in Caruyer et al. (2011), De Santis
et al. (2011).
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