Strong electron-phonon coupling in the rare-earth carbide superconductorLa2C3

J. S. Kim, Wenhui Xie, R. K. Kremer, V. Babizhetskyy, O. Jepsen, A. Simon, K. S. Ahn, B. Raquet, H. Rakoto, J.-M. Broto, B. Ouladdiaf
2007 Physical Review B  
We present the results of a crystal structure determination using neutron powder diffraction as well as the superconducting properties of the rare-earth sesquicarbide La2C3 (Tc ~ 13.4 K) by means of specific heat and upper critical field measurements. From the detailed analysis of the specific heat and a comparison with ab-initio electronic structure calculations, a quantitative estimate of the electron-phonon coupling strength and the logarithmic average phonon frequency is made. The
more » ... honon coupling constant is determined to \lambda ~ 1.35. The electron-phonon coupling to low energy phonon modes is found to be the leading mechanism for the superconductivity. Our results suggest that La2C3 is in the strong coupling regime, and the relevant phonon modes are La-related rather than C-C stretching modes. The upper critical field shows a clear enhancement with respect to the Werthamer-Helfand-Hohenberg prediction, consistent with strong electron-phonon coupling. Possible effects on the superconducting properties due to the noncentrosymmetry of the crystal structure are discussed.
doi:10.1103/physrevb.76.014516 fatcat:hfxqkmtokfgfrbgr2pzyaw74re