Assessing and zoning of typhoon storm surge risk with GIS technique: A case study of the coastal area of Huizhou [post]

Si Wang, Lin Mu, Zhenfeng Yao, Jia Gao, Enjin Zhao
2020 unpublished
Abstract. Storm surge is one of the most destructive marine disasters to life and property for Chinese coastal regions, especially for Guangdong province. In Huizhou city, Guangdong province, due to the high concentration of chemical and petroleum industries and the high population density, the low-lying coastal area is susceptible to the storm surge. Therefore, a comprehensive risk assessment of storm surge over the coastal area of Huizhou can delimit zones that could be affected to reduce
more » ... ster losses. In this paper, typhoon intensity for the minimum central pressure of 880 hPa, 910 hPa, 920 hPa, 930 hPa, and 940 hPa (corresponding to 1000-year, 100-year, 50-year, 20-year, and 10-year return period) scenarios were designed to cover possible situations. The Jelesnianski method and the Advanced Circulation (ADCIRC) model coupled with the Simulating Waves Nearshore (SWAN) model were utilized to simulate inundation extents and depths of storm surge over the computational domain under these representative scenarios. Subsequently, the output data from the coupled simulation model (ADCIRC–SWAN) were imported to Geographical Information System (GIS) software to conduct the hazard assessment for each of the designed scenarios. Then, the vulnerability assessment was made based on the dataset of land cover types in the coastal region. Consequently, the potential storm surge risk maps for the designed scenarios were produced by combining hazard assessment and vulnerability assessment with the risk matrix approach. The risk maps indicate that due to the protection given by storm surge barriers, only a small proportion of the petrochemical industrial zone and the densely populated communities in the coastal areas were at risk of storm surge for the scenarios of 10-year and 20-year return period typhoon intensity. Moreover, some parts of the exposed zone and densely populated communities were subject to high and very high risk when typhoon intensities were set to a 50-year or a 100-year return period. Besides, the scenario with the most intense typhoon (1000-year return period) induced the very high risk to the coastal area of Huizhou. Accordingly, the risk maps can help decision-makers to develop risk response plans and evacuation strategies in coastal communities with the high population density to minimize civilian casualties. The risk analysis can also be utilized to identify the risk zones with the high concentration of chemical and petroleum industries to reduce economic losses and prevent environmental damage caused by the chemical pollutants and oil spills from petroleum facilities and infrastructures that could be affected by storm surge.
doi:10.5194/nhess-2020-130 fatcat:dvw7ofgy3ra7fklxkkk47w54fi