Independence and Coloring Problems on Intersection Graphs of Disks [chapter]

Thomas Erlebach, Jiří Fiala
<span title="">2006</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
This chapter surveys on-line and approximation algorithms for the maximum independent set and coloring problems on intersection graphs of disks. It includes a more detailed treatment of recent upper and lower bounds on the competitive ratio of on-line algorithms for coloring such graphs.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/11671541_5</a> <a target="_blank" rel="external noopener" href="">fatcat:q7gquet6kraljam3wcoklhz6zm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>