A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Duality Pairs and Homomorphisms to Oriented and Unoriented Cycles
2021
Electronic Journal of Combinatorics
In the homomorphism order of digraphs, a duality pair is an ordered pair of digraphs $(G,H)$ such that for any digraph, $D$, $G\to D$ if and only if $D\not \to H$. The directed path on $k+1$ vertices together with the transitive tournament on $k$ vertices is a classic example of a duality pair. In this work, for every undirected cycle $C$ we find an orientation $C_D$ and an oriented path $P_C$, such that $(P_C,C_D)$ is a duality pair. As a consequence we obtain that there is a finite set,
doi:10.37236/9747
fatcat:pw3dtq4rczhdjgwvjisrljeitm