A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Holonomy Groupoids of Singular Foliations
2001
Journal of differential geometry
We give a new construction of Lie groupoids which is particularly well adapted to the generalization of holonomy groupoids to singular foliations. Given a family of local Lie groupoids on open sets of a smooth manifold M , satisfying some hypothesis, we construct a Lie groupoid which contains the whole family. This construction involves a new way of considering (local) Morita equivalences, not only as equivalence relations but also as generalized isomorphisms. In particular we prove that almost injective Lie algebroids are integrable.
doi:10.4310/jdg/1090348356
fatcat:jr5gd4ref5b2je37xlmu6yiicq