A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Learning Semantic Representations for Unsupervised Domain Adaptation
2018
International Conference on Machine Learning
It is important to transfer the knowledge from label-rich source domain to unlabeled target domain due to the expensive cost of manual labeling efforts. Prior domain adaptation methods address this problem through aligning the global distribution statistics between source domain and target domain, but a drawback of prior methods is that they ignore the semantic information contained in samples, e.g., features of backpacks in target domain might be mapped near features of cars in source domain.
dblp:conf/icml/XieZCC18
fatcat:mizrllhtvzcu3flpvvccnzcype