A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Bridging between 0/1 and Linear Programming via Random Walks
[article]
2019
arXiv
pre-print
Under the Strong Exponential Time Hypothesis, an integer linear program with n Boolean-valued variables and m equations cannot be solved in c^n time for any constant c < 2. If the domain of the variables is relaxed to [0,1], the associated linear program can of course be solved in polynomial time. In this work, we give a natural algorithmic bridging between these extremes of 0-1 and linear programming. Specifically, for any subset (finite union of intervals) E ⊂ [0,1] containing {0,1}, we give
arXiv:1904.04860v1
fatcat:mru5bc6lhnh5tjn2sfyxoyhuqe