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Abstract

Objective: The molecular mechanisms linking physical inactivity and muscle insulin resistance in
humans have been suggested to include increased muscle inflammation, possibly associated with
impaired oxidative metabolism. We employed a human bed rest study including 20 young males with
normal birth weight (NBW) and 20 with low birth weight (LBW) and increased risk of diabetes.
Methodology: The subjects were studied before and after 9 days of bed rest using the euglycemic–
hyperinsulinemic clamp and muscle biopsy excision. Muscle inflammatory status was assessed as
nuclear factor-kB (NF-kB) activity and mRNA expression of the pro-inflammatory MCP1 (CCL2) and
IL6 and the macrophage marker CD68. Furthermore, mRNA expression of genes central to oxidative
phosphorylation (OXPHOS) was measured including ATP5O, COX7A1, NDUFB6, and UQCRB.
Results: At baseline, muscle inflammatory status was similar in NBW and LBW individuals. After bed
rest, CD68 expression was increased in LBW (PZ0.03) but not in NBW individuals. Furthermore,
expression levels of all OXPHOS genes were reduced after bed rest in LBW (P%0.05) but not in NBW
subjects and were negatively correlated with CD68 expression in LBW subjects (P%0.03 for all
correlations). MCP1 expression and NF-kB activity were unaffected by bed rest, and IL6 expression was
too low for accurate measurements. None of the inflammatory markers correlated with insulin
sensitivity.
Conclusions: Although LBW subjects exhibit disproportionately elevated CD68 mRNA expression
suggesting macrophage infiltration and reduced OXPHOS gene expression when exposed to bed rest,
our data altogether do not support the notion that bed rest-induced (9 days) insulin resistance is
caused by increased muscle inflammation.
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Introduction

Insulin resistance is a major component of type 2
diabetes (T2D) (1). Apart from a well-documented
genetic influence (2, 3), insulin sensitivity is largely
determined by age (4), sex (5), body composition/
adiposity (6), and physical activity level (7). In addition,
an adverse intra-uterine environment, as evidenced by
low birth weight (LBW), has consistently been associ-
ated with altered metabolic function in studies of both
young and old individuals (8, 9, 10, 11). The prevalence
of T2D has increased rapidly over the last decades (12).
This has, to a great extent, been attributed to an
increasingly sedentary lifestyle (13, 14, 15). Muscle
ndocrinology
insulin resistance may represent a key mechanism
linking physical inactivity with increased risk of
developing T2D and may, to some extent, involve
increased inflammation (13, 16, 17). Indeed, several
studies have demonstrated that increased insulin
sensitivity following exercise training was related
to decreased muscle and/or systemic inflammation
(18, 19). Thus, increased physical activity might, at
least in part, increase insulin sensitivity by lowering the
level of muscle inflammation. Although studies exam-
ining the association between physical activity, insulin
resistance, and inflammation are very important from
an intervention perspective, most present societies
become increasingly sedentary. Thus, a more relevant
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approach is to focus on identifying molecular
mechanisms related to physical inactivity as opposed
to exercise training in the investigation of T2D
pathophysiology. Although cross-sectional studies
suggest that physical inactivity and low-grade systemic
inflammation are linked (reviewed in Petersen &
Pedersen (20) and Hamer (21)), the effect of physical
inactivity on muscle inflammatory status has not
previously been studied longitudinally in humans.

The notion of a general link between inflammation
and insulin resistance is supported by studies demon-
strating that reducing the level of inflammation (e.g. by
pharmacological agents) in insulin-resistant humans
is an effective treatment of insulin resistance (22, 23).
Although not supported by all observations (24, 25),
several studies have implicated activity of the inflam-
matory inhibitor kB kinase (IKK)/nuclear factor-kB
(NF-kB) pathway in skeletal muscle in the patho-
genesis of insulin resistance (18, 26, 27, 28, 29). The
transcription factor NF-kB induces expression of
pro-inflammatory genes, including tumor necrosis
factor-a (TNF-a), interleukin-6 (IL6), and monocyte
chemotactic protein-1 (MCP1 (CCL2)) as well as the
TNF-a receptor (30, 31). Although the effect of acute IL6
stimulation is still debated, it has been established that
chronically elevated plasma levels of TNF-a and IL6 are
associated with insulin resistance (16). MCP1 is not only
involved in the recruitment of macrophages (32) but
may also induce insulin resistance in myocytes directly
(33, 34). Infiltration of inflammatory cells, including
macrophages, directly into the inflamed muscle tissue
or in the adipose tissue surrounding the muscle fibers
has been demonstrated previously (35, 36, 37, 38).
These cells are thought to maintain the inflammatory
state and may also represent a source of cytokines acting
in a paracrine and/or endocrine manner (35).

In this study, we investigated the effect of 9 days of
physical inactivity and subsequent retraining on
inflammatory status (NF-kB activity and mRNA
expression of MCP1, IL6, and cluster of differentiation
68 (CD68), a macrophage marker) as well as a set of
Table 1 Clinical characteristics. MeanGS.D. M-value was expressed

NBW

Baseline

n 20
Birth weight (g) 3.8G0.2
Age (years) 25G1
Height (cm) 185G5
Weight (kg) 82.5G10.1
Waist-to-hip ratio 0.85G0.04
BMI (kg/m2) 24.1G2.3
Total fat percentage (%) 17.7G7.3
Total fat mass (kg) 14.3G7.8
Lean body mass (kg) 63.8G4.9
VO2max (ml/min per kg) 44.3G5.6
M-value 14.4G1.7

FFM, fat-free mass; LBW, low birth weight; NBW, normal birth weight. *P!0.0
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associated nuclear-encoded OXPHOS genes in skeletal
muscle from healthy young males with normal birth
weight (NBW) or LBW. We evaluated whether the
degree of muscle inflammation after bed rest was
associated with the previously described insulin resist-
ance induced by physical inactivity in this study
population (39).
Materials and methods

The data presented in this study are part of a larger
study on the influence of physical inactivity in healthy
study participants with or without a predisposition to
T2D including both LBW subjects and first-degree
relatives (FDR) of patients with T2D. Data from this
study have been published previously (17, 39, 40, 41).
The current study was performed on muscle biopsies
obtained during the bed rest studies, and the number of
subjects in the individual groups represents the subjects
in whom the biopsy tissue amount was sufficient to
perform the analyses of inflammatory markers. Due to
limited amounts of muscle tissue in the FDR group, our
wish to avoid reduced statistical power including more
than two groups as well as our prime focus on LBW
subjects, measurements of inflammatory markers in
FDR muscle biopsies were not performed. This work was
initiated and funded by the European Union Framework
VI EXGENESIS project.
Participants

Forty healthy young Caucasian men were recruited via
the Danish National Birth Registry according to birth
weight (Table 1), as described previously (40). Twenty
had LBW (birth weight ! 10th percentile) and 20
were age-matched controls with NBW (50th percentile
! birth weight ! 75th percentile). All men were
singletons born at term in the Copenhagen area, had
no family history of diabetes, and had a BMI !30.
as mg glucose/kg FFM per min.

LBW

After bed rest Baseline After bed rest

20 20 20
NA 2.5G0.2* NA
NA 26G2 NA
NA 179G5* NA

82.2G10.4 75.4G11.1* 75.4G11.1
0.86G0.04 0.86G0.06 0.86G0.07
23.9G2.4 23.3G3.2 23.5G3.1
18.5G8.1 20.0G6.9 20.0G7.4
15.5G8.7 14.9G7.3 15.1G7.9
64.2G3.6 57.2G6.4* 57.4G5.9*
43.5G5.2 43.4G8.3 40.6G9.2
10.7G2.0† 13.7G1.8 10.3G2.2†

5 vs NBW. †P!0.05 vs before bed rest.
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The study was approved by the regional ethics
committee and conducted according to the principles
of the Helsinki Declaration. Informed written consent
was obtained from all study participants.
Experimental protocol

For a detailed description of the experimental protocol,
please see previous studies (17, 39, 40). In short, all
participants were admitted to the Steno Diabetes Center,
Gentofte, Denmark, for 10 days and were not permitted
to deviate from a half-recumbent position during this
period. Toilet visits, limited to 15 min/day, were allowed.
During bed rest, a standardized diet with adjusted
caloric content (to maintain a stable weight during
bed rest) was provided to ensure weight stability. After
bed rest, all participants completed a 4-week retraining
program, as described previously (17).
Clinical examination

Before and after bed rest, anthropometric measurements
including weight, height, and waist and hip circumfer-
ences, determination of body composition by dual-
energy X-ray absorptiometry scanning, and estimation
of maximal aerobic capacity (VO2max) by bicycle testing
were performed, as described previously (39). Insulin
sensitivity was examined by a 3-h euglycemic–hyper-
insulinemic clamp (80 mU/m2 per min) before and after
9 days of bed rest. Steady state was defined as the last
30 min of the basal and insulin-stimulated clamp
periods. Insulin sensitivity is given as the average glucose
infusion rate during steady state (M-value) (40). Skeletal
muscle samples were collected in the basal and insulin-
stimulated states before and after bed rest, but only in the
basal state after retraining. The biopsies were excised
from the vastus lateralis muscle under local anesthesia
(1% lidocaine) using a Bergstrom needle with suction
applied. The samples were immediately frozen in liquid
nitrogen and stored at K80 8C until further processed.
Preparation of lysate

Approximately 50 mg of muscle biopsy was freeze-
dried, dissected free of visible fat and connective tissue,
and homogenized using Tissuelyser (Qiagen) in
ice-cold buffer (1:80, dw:v) containing 50 mM HEPES
(pH 7.5), 150 mM NaCl, 20 mM Na-pyrophosphate,
20 mM b-glycerophosphate, 10 mM NaF, 2 mM
Na-orthovanadate, 1 mM EDTA, 1 mM EGTA, 1%
nonidet P-40, 10% glycerol, 2 mM phenylmethyl-
sulphonyl fluoride, 10 mg/ml leupeptin, 10 mg/ml
aprotinin, and 3 mM benzamidine. Homogenates were
rotated end-over-end for 1 h at 4 8C and cleared by
centrifugation at 17 500 g at 4 8C for 1 h. The lysate was
stored at K80 8C. Protein content was measured using
the bicinchoninic acid assay (Pierce, Rockford, IL, USA).
NF-kB activity

Basal and insulin-stimulated NF-kB activities were
evaluated as DNA-binding capacity employing an
ELISA-based kit (#40097, Active Motif, Carlsbad, CA,
USA). This assay was only run on 127 basal and insulin-
stimulated samples (68 NBW samples and 59 LBW
samples) due to limitations in biopsy availability. Twenty
micrograms of protein from whole-tissue lysates were
loaded in duplicate, and the assay was performed
according to the manufacturer’s recommendations.
The sample was rerun if the signal between duplicates
deviated more than 10%. Signal intensity was
normalized to a standard loaded on all plates.
mRNA expression

RNA was extracted from w50 mg skeletal muscle biopsy
using TRI reagent (Sigma–Aldrich). cDNA was syn-
thesized using RevertAid first-strand cDNA synthesis
kit (Fermentas Life Sciences, Burlington, ON, Canada).
BasalCD68 (Hs00154355_m1, averageCtZ30.1 cycles),
CCL2 (MCP1) (Hs00234140_m1, average CtZ30.0
cycles), and IL6 (Hs00985639_m1, average CtZ35.1
cycles) expression levels were quantified using TaqMan
real-time PCR on an ABI Prism 7900 HT platform
(Applied Biosystems, Foster City, CA, USA) using the
standard curve method (51 NBW samples and 53 LBW
samples). The gene expression was normalized to PPIA
(cyclophilin A) (4326316E, average CtZ25.6 cycles) and
expressed in arbitrary units (AU). mRNA expression of
cyclophilin A was similar in the birth weight groups and
was not significantly affected by bed rest within each
group. One data point (CD68 expression after bed rest in a
NBW individual) was removed as an outlier, being O35
S.D. higher than the average. The mRNA expressions of
ATP synthase subunit O (ATP5O (Hs00426889_m1)),
cytochrome c oxidase polypeptide 7A1 (COX7A1
(Hs00156989_m1)), NADH dehydrogenase 1 beta sub-
complex subunit 6 (NDUFB6 (Hs00159583_ m1)), and
ubiquinol–cytochrome c reductase binding protein
(UQCRB (Hs00559884_ m1)) were measured by
low-density arrays (Applied Biosystems) as described
previously (17). The relative amount of target mRNA
was calculated using the comparative threshold cycle
method. Cyclophilin A (PPIA; Hs99999904_m1) was
used as the reference gene for normalization.
Statistical analysis

All statistical tests were performed in SAS (version 9.1,
SAS Institute, Cary, NC, USA). Data are presented as
meanGS.D. P%0.05 was considered significant.
Repeated measures analyses (using the proc-mixed
procedure) were performed to evaluate the effect of
bed rest and birth weight as well as the interaction
between birth weight and the response to bed rest. In
case of significant effects/interactions, post hoc paired
www.eje-online.org
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and unpaired t-tests were employed for comparison of
dependent and independent observations respectively.
Furthermore, t-tests were employed to evaluate the
effect of training (from baseline measurements).
Spearman’s rank correlation coefficient was calculated
to evaluate the correlation between two continuous
variables.
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Results

Clinical characteristics

Baseline characteristics of the individuals and the
physiological effects of bed rest have been described
previously (40, 41). In brief, LBW participants had
lower height and lean body mass but similar insulin
sensitivity and adiposity as NBW participants (Table 1).
After bed rest, insulin sensitivity was decreased in both
groups, and a tendency toward lower VO2max was seen,
especially in LBW individuals. Measures of adiposity and
body composition were not affected by bed rest.
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Figure 1 Effect of bed rest on muscle inflammatory status. Basal
CD68 (A) and MCP1 (B) mRNA expression as well as basal NF-kB
activity (C) were measured before bed rest, after bed rest, and after
retraining in NBW and LBW individuals. The mRNA expression was
normalized to PPIA (cyclophilin A). Due to the variation in sample
numbers, we include the number of samples in each analysis. For
CD68 expression (A): before bed rest (BB), 18 NBW and 16 LBW
individuals; after bed rest (AB), 17 NBW and 17 LBW individuals;
after retraining (AR), nine NBW and 17 LBW individuals. For MCP1
expression (B): BB: 16 NBW and 16 LBW individuals; AB: 16 NBW
and 18 LBW individuals; AR: 11 NBW and 15 LBW individuals. For
NF-kBactivity (C):BB:14NBWandnineLBW individuals;AB:13NBW
Skeletal muscle mRNA expression of inflam-
matory markers

CD68 expression was similar in NBW and LBW
individuals at baseline (PZ0.34, Fig. 1). However, we
found a differential effect of bed rest on LBW compared
with NBW individuals (PZ0.03 for the interaction)
when employing repeated measures analyses. In LBW
participants, CD68 expression was increased after bed
rest (PZ0.02) and was normalized after retraining
(PZ0.99 for the test of difference between before bed
rest and after retraining values), whereas CD68
expression was unaffected by both bed rest (PZ0.86)
and retraining in NBW individuals (PZ0.72).

MCP1 expression was similar in NBW and LBW
participants at baseline (PZ0.33, Fig. 1) and did not
change significantly in response to bed rest (PZ0.96).
In support of these results, no interaction was found
between bed rest and birth weight (PZ0.69) on MCP1
expression. Regardless, increased MCP1 expression was
observed after retraining in NBW individuals (PZ0.03).
IL6 mRNA levels were too low to be measured
accurately (data not shown).
and 13 LBW individuals; AR: 11 NBW and 13 LBW individuals. Data
are presented as meanG1.96 S.E.M. AU, arbitrary units. *P!0.05.
NF-kB activity

We found no effect of birth weight (PZ0.82) or bed rest
(PZ0.83) on NF-kB activity in skeletal muscle (Fig. 1).
Additionally, no significant interaction was found
between bed rest and birth weight (PZ0.78). Similarly,
we found no effect of retraining on muscle NF-kB
activity in NBW (PZ0.89) or LBW individuals
(PZ0.32). Finally, insulin stimulation did not affect
muscle NF-kB activity before or after bed rest (PO0.39
for all paired t-tests, Fig. 2).
www.eje-online.org
Correlation analyses for inflammatory
mediators

At baseline,CD68expression was correlated positively with
BMI (rs (Spearman’s rank correlation coefficient)Z0.53,
PZ0.02) and fat percentage (rsZ0.56, PZ0.01) and
negatively with VO2max in NBW individuals (rsZK0.56,
PZ0.02). In LBW individuals, similar tendencies,
although not significant, were seen. No significant
correlation was found between CD68 expression and
Downloaded from Bioscientifica.com at 11/29/2018 09:46:52AM
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Figure 2 Effect of insulin stimulation on muscle NF-kB activity.
Basal and insulin-stimulated NF-kB activity was measured before and
after bed rest in NBW and LBW individuals. Due to the variation in
sample numbers, we include the number of samples in each analysis.
For NBW (A): before bed rest (BB), 14 basal and 14 insulin-stimulated
samples; after bed rest (AB), 13 basal and 15 insulin-stimulated
samples. For LBW (B): BB: nine basal and 12 insulin-stimulated
samples; AB: 13 basal and 12 insulin-stimulated samples. Data
are presented as meanG1.96 S.E.M. AU, arbitrary units. *P!0.05.
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NF-kB activity in NBW or LBW individuals (PR0.25 for
both analyses). MCP1 expression was not significantly
correlated with adiposity or VO2max in NBW or LBW
individuals at baseline (PR0.23 for all analyses). In NBW
individuals, MCP1 expression was negatively correlated
with NF-kB activity (rsZK0.64, PZ0.03), which was
not the case for LBW individuals (rsZK0.17, PZ0.69).
Muscle NF-kB activity was significantly negatively
correlated with fat percentage (rsZK0.68, PZ0.04) in
NBW but not in LBW individuals (rsZ0.08, P!0.83) at
baseline. NF-kB activity was not significantly associated
with BMI or VO2max. Muscle inflammatory status as
evaluated by the mRNA expression ofCD68 andMCP1, as
well as NF-kB activity, was not significantly associated
with whole-body insulin sensitivity (PR0.33 for all
analyses, Fig. 3).
Regulation of oxidative metabolism and its
possible link to inflammation

We have chosen four key genes central to oxidative
phosphorylation (OXPHOS) in skeletal muscle (11, 42)
to illustrate the effect of bed rest on oxidative
metabolism: ATP5O, COX7A1, NDUFB6, and UQCRB.
The gene expression data (OXPHOS genes) on NBW
individuals have been published previously (17) and
will thus not be described in detail but only be used as
reference points in the analyses of the LBW data. mRNA
expression of the OXPHOS genes was significantly
reduced after bed rest in LBW individuals (Table 2)
whereas OXPHOS gene expression was generally
unaffected in NBW individuals (except for NDUFB6,
Table 2). To investigate whether the increased CD68
mRNA expression after bed rest in LBW individuals
could be associated with the decreased expression of
OXPHOS genes in LBW individuals, we performed
correlation analyses. At baseline, CD68 expression
was negatively correlated with UQCRB expression in
LBW subjects (rsZK0.51, PZ0.04) as well as ATP5O
(rsZK0.48, PZ0.04) and UQCRB (rsZK0.48,
PZ0.04) expression in NBW. After bed rest, CD68
mRNA expression was negatively correlated with the
mRNA expression of all four OXPHOS genes (P%0.03
for all analyses) in both LBW and NBW indivi-
duals (except for NDUFB6 expression in NBW subjects
(rsZK0.43, PZ0.09)). At baseline, NF-kB activity
and MCP1 mRNA expression were not significantly
correlated with the mRNA expression of any of the
four OXPHOS genes in either LBW or NBW individuals
(PO0.40 for all analyses).
Discussion

In this study, we found a differential response in LBW
compared with NBW individuals to the diabetogenic
challenge of bed rest: muscle CD68 mRNA expression
was increased, and mRNA expression of all four
OXPHOS genes measured was decreased after bed rest
in LBW but not in NBW individuals. Moreover, CD68
mRNA expression was negatively correlated with
expression of the four OXPHOS genes after bed rest.
We found no effect of bed rest on muscle MCP1
expression or on NF-kB activity. Muscle inflammatory
status as estimated by NF-kB activity and mRNA
expression of CD68 or MCP1 was not associated with
insulin sensitivity in either NBW or LBW individuals.

Most studies investigating the link between insulin
sensitivity, physical activity level, and inflammation
have employed increased physical activity as the
intervention (18, 19). However, in most societies, the
general – and rather unfortunate – development is
not an increased physical activity level but rather a
trend to reduce it. Furthermore, even if exercise training
increases insulin sensitivity through lowered muscle
inflammation in a direct causal manner, as some
studies indicate (18, 19), this does not necessarily
entail that the mechanism for the reverse scenario with
physical inactivity-induced insulin resistance develops
in the exact opposite causal manner. In this study,
www.eje-online.org
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we addressed aspects of the molecular mechanisms
underlying the association between physical inactivity
and risk of developing T2D. It might be argued that
complete inactivity is inappropriate to reflect the
relative physical inactivity seen in most individuals
developing T2D. However, the applied bed rest challenge
in a real world setting may be comparable with periods of
www.eje-online.org
hospitalization or with the periods of inactivity experi-
enced on a daily basis in long-distance truck drivers.

CD68, a glycoprotein primarily expressed by macro-
phages, has previously been used as a marker of
macrophage infiltration (35, 43, 44). It may be argued
that elevated CD68 mRNA expression may not
necessarily imply an increased number of macrophages.
Nonetheless, a recent study demonstrated that CD68
mRNA expression correlated with the number of
CD68-positive cells evaluated by immunohistochemis-
try (43). However, CD68 is also, to some extent,
expressed by other cell types including fibroblasts (45).
Altogether, we recognize that CD68 mRNA expression
represents a very rough estimate of the degree of
macrophage infiltration. A more direct approach
includes immunohistochemical staining of CD68
protein in the tissue, which should be employed in
future studies aiming at validating the results obtained
in this study. Unfortunately, this was not possible in the
current study due to limitations in biopsy availability.
In this study, we demonstrated a differential response
between NBW and LBW subjects to bed rest to which
only LBW individuals responded with increased CD68
expression. This suggests that an adverse intrauterine
environment might predispose to increased macrophage
infiltration in response to the stress induced by physical
inactivity. Regardless, we found no evidence that such
macrophage infiltration (CD68 mRNA expression)
influenced either muscle insulin action or inflammatory
signaling through NF-kB in LBW or NBW individuals.
Thus, the possibilities remain that i) macrophage
infiltration in LBW subjects may reflect a secondary
and nondisease-causing effect and ii) increased inflam-
mation may confer risk of T2D due to influences in
nonmuscle tissues including liver or fat in LBW subjects.
Furthermore, it can be speculated that an adverse effect
of increased muscle inflammation (macrophage infiltra-
tion estimated from CD68 mRNA expression) in LBW
individuals may occur only after prolonged tissue
exposure. Regardless, increased muscle inflammatory
signaling cannot explain the severe in vivo insulin
resistance already seen after 9 days.

The differential responses of muscle OXPHOS and
CD68 gene expression in LBW individuals after bed rest
does to some extent support the idea of LBW individuals
being more sensitive to the adverse metabolic effects of
physical inactivity compared with the NBW controls.
However, our data do not indicate that these differences
translated into disproportionally adverse effects on
whole-body insulin action in the LBW subjects who
were as insulin resistant as the NBW controls after
9 days of bed rest. We of course cannot exclude that
LBW subjects were more insulin resistant in the tissue of
skeletal muscle (as opposed to whole-body metabolism)
after bed rest or that whole-body insulin resistance in
the LBW subjects could have been documented if other
in vivo insulin action measurement methods were used.
Indeed, we have previously demonstrated that young
Downloaded from Bioscientifica.com at 11/29/2018 09:46:52AM
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Table 2 Impact of bed rest on key genes involved in oxidative metabolism in skeletal muscle. MeanGS.E.M. Data on OXPHOS gene
expression in NBW individuals have been published previously (17) and will therefore only be used as reference points in the analyses of the
LBW data. The mRNA expression was normalized to PPIA (cyclophilin A).

mRNA expression Before bed rest After bed rest Retraining P (bed rest effect)

NBW (nZ20)
ATP5O (AU) 0.95G0.09 0.68G0.09 0.71G0.06 0.08
COX7A1 (AU) 1.18G0.10 0.97G0.12 0.90G0.12 0.21
NDUFB6 (AU) 1.12G0.12 0.74G0.09 0.88G0.08 0.03
UQCRB (AU) 1.02G0.09 0.79G0.09 0.76G0.07 0.11

LBW (nZ16)
ATP5O (AU) 0.96G0.08 0.54G0.07 0.78G0.08 0.0008
COX7A1 (AU) 1.51G0.14 1.08G0.19 1.21G0.18 0.05
NDUFB6 (AU) 1.16G0.10 0.73G0.09 0.94G0.08 0.0015
UQCRB (AU) 1.08G0.09 0.69G0.10 0.87G0.08 0.003

The P values were calculated from paired t-tests using pre- and post-bed rest values. ATP5O, ATP synthase subunit O; COX7A1, cytochrome c oxidase
polypeptide 7A1; NDUFB6, NADH dehydrogenase 1 beta subcomplex subunit 6; OXPHOS, oxidative phosphorylation; UQCRB, ubiquinol–cytochrome c
reductase binding protein.
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LBW subjects displayed normal whole-body insulin
sensitivity even in the presence of a decreased insulin-
mediated glucose uptake in the forearm (41, 46).

We found a negative association between mRNA
expression of CD68 and four OXPHOS genes in LBW
individuals after bed rest, suggesting that the decreased
OXPHOS expression in LBW subjects might be associ-
ated with their increased CD68 mRNA expression.
However, our study cannot determine the extent to
which these associations were causal. NF-kB activity
was not correlated with any of the four OXPHOS genes
before or after bed rest in NBW or LBW subjects arguing
against a tight association between NF-kB activity and
OXPHOS gene expression in skeletal muscle.

Interestingly, CD68 expression was correlated
positively with adiposity and negatively with VO2max.
However, CD68 expression was not correlated with
insulin sensitivity before or after bed rest (data not
shown), supporting the view that factors other than
inflammation caused the insulin resistance induced by
bed rest. The link between obesity and increased
macrophage content in adipose tissue is well established
(36, 44, 47). In accordance with Varma et al. (38), our
study indicates that obesity is associated with elevated
macrophage infiltration (CD68 mRNA expression) in
muscle. Furthermore, our data suggest that a high
physical fitness level might be linked to decreased
macrophage infiltration.

The similar MCP1 mRNA expression in LBW and
NBW subjects at baseline corresponded well with the
similar CD68 expression and NF-kB activity, indicating
that LBW per se is not associated with increased muscle
inflammation in these subjects. As MCP1 expression
was not affected by bed rest, our data suggest that the
increase in muscle macrophage content in LBW after
bed rest occurred by an MCP1-independent mechanism.
However, as MCP1 protein content was not measured,
we cannot exclude that the increased macrophage
infiltration could, at least partly, be a consequence of
elevated muscle MCP1 protein levels. Acute exercise in
humans and rodents increases muscle MCP1 mRNA
expression (28, 48). Similarly, we found increasedMCP1
expression after retraining in NBW subjects. Whether
MCP1 expression is involved in mediating some
metabolic effects of exercise in skeletal muscle, including
angiogenesis as previously suggested (28, 48), needs
to be further investigated in human studies. However,
our study indicates that the mechanism does not include
recruitment of macrophages, as CD68 expression was
unaffected by retraining.

Muscle MCP1 gene expression was not associated
with adiposity, VO2max, or insulin sensitivity. This is in
contrast to MCP1 expression in adipose tissue, which
is associated positively with BMI and negatively with
insulin sensitivity (43, 47, 49). Our study participants
were generally insulin sensitive, so the association
between insulin sensitivity and MCP1 expression may
not be evident in this population. By contrast, the range
in BMI was relatively broad (19–30 kg/m2), suggesting
that muscle MCP1 expression is unaffected by adiposity
in normal and over weight individuals, similar to
previous findings in lean and obese (28). Altogether,
it seems that MCP1 expression in adipose tissue is
dependent on body composition (49), whereas it is
regulated by other, as yet unidentified, factors in skeletal
muscle. Although MCP1 and CD68 mRNA expression
is positively correlated with human adipose tissue (47),
we found no significant correlation between these
inflammatory markers in muscle (data not shown).
Future studies should investigate whether MCP1 is
as important in the recruitment of macrophages into
muscle as it seems to be in adipose tissue.

We found similar muscle NF-kB activity in NBW and
LBW individuals, which is in accordance with our
previous study (25). No effect of bed rest or retraining
was found on muscle NF-kB activity, suggesting that the
observed effect of bed rest on insulin sensitivity and
CD68 expression and the effect of retraining on MCP1
expression were not mediated by elevated NF-kB
activity. The ‘lack’ of association between physical
inactivity and NF-kB activity is in line with the
dissociation between VO2max and muscle NF-kB activity
www.eje-online.org
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seen in this and in our previous studies (25). Thus,
although training-induced increases in VO2max were
associated with decreased muscle NF-kB activity (18),
decreased VO2max induced by inactivity did not affect
NF-kB activity. This clearly illustrates the complex
relationship between physical activity status and muscle
NF-kB activity, which needs further investigation in
intervention studies including both increased and
decreased physical activity. We found no positive
association between adiposity and muscle NF-kB
activity as suggested by previous studies (28, 50). In
the most recent of these studies, NF-kB activity was only
positively correlated with one measure of adiposity but
not with others (50). In addition, the analyses were not
corrected for age and sex (50), which are important
determinants of muscle NF-kB activity (25). In
accordance with some (25, 50) but not all studies
(18), we found no association between baseline muscle
NF-kB activity and insulin sensitivity. This finding
supports the notion that NF-kB activity in muscle may
not be involved in the regulation of insulin sensitivity.

In line with previous studies employing 2 or 6 h
of insulin infusion (25, 51), we found no effect of 3 h
of supraphysiological insulin stimulation (80 mU/m2

per min) on NF-kB activity. By contrast, high insulin
levels have been reported to activate NF-kB in cell lines
(52, 53). The transition from cell lines to humans
coupled with the very high insulin levels in both cell line
studies might explain the discrepancy between the
human and cell line studies.

Similar to our results in muscle, we previously
demonstrated that 9 days of bed rest did not affect
measures of systemic or adipose tissue inflammation in
the NBW individuals (54). Interestingly, bed rest was
associated with increased plasma TNF-a levels in young
healthy FDR (54). Altogether, these studies indicate that
persons predisposed to T2D, either genetically or due to
an adverse intrauterine environment, might display a
stronger inflammatory response (increased macrophage
infiltration as estimated by CD68 mRNA expression in
LBW individuals and elevated TNF-a levels in FDR) to
physical inactivity. This might contribute to their
increased prevalence of T2D in sedentary societies.

Although we only found modest effects of bed rest on
determinants of muscle inflammation in this study, we
cannot exclude effects on other measures of muscle
inflammation. We attempted to determine muscle IL6
mRNA expression, but it was too low to be measured
accurately. In addition, we performed western blot
analyses for protein detection of IL6, MCP1, and TNF-a
in skeletal muscle. However, we could not reliably detect
the amounts of any of the proteins in this experimental
setting including young, nonobese male subjects.
Finally, we cannot exclude that increased muscle
inflammation might be a trigger for the reduced insulin
sensitivity seen in other states of physical inactivity,
including chronic adoption to a sedentary lifestyle.
www.eje-online.org
In summary, CD68 mRNA expression was increased
after bed rest in LBW but not in NBW individuals,
indicating increased muscle macrophage infiltration
in LBW subjects, possibly associated with reduced
OXPHOS gene expression after bed rest. However,
MCP1 expression and NF-kB activity were unaffected
by bed rest in both groups. CD68 and MCP1 expression
as well as NF-kB activity were not associated with
insulin sensitivity. Altogether, our study indicates
that the quantitatively marked ‘insulin-desensitizing’
effect of short-term bed rest (9 days) in both LBW and
NBW subjects (39) is unlikely to be mediated through
increased inflammation in skeletal muscle. Thus, the
proposed link (20, 21) between physical inactivity
and low-grade inflammation could not be supported
by this study.
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