The Effects of Land Use and Land Cover Geoinformation Raster Generalization in the Analysis of LUCC in Portugal

Bruno Meneses, Eusébio Reis, Rui Reis, Maria Vale
2018 ISPRS International Journal of Geo-Information  
Multiple land use and land cover (LUC) datasets are available for the analysis of LUC changes (LUCC) in distinct territories. Sometimes, different LUCC results are produced to characterize these changes for the same territory and the same period. These differences reflect: (1) The different properties of LUC geoinformation (GI) used in the LUCC assessment, and (2) different criteria used for vector-to-raster conversion, namely, those deriving from outputs with different spatial resolutions. In
more » ... al resolutions. In this research, we analyze LUCC in mainland Portugal using two LUC datasets with different properties: Corine Land Cover (CLC 2006 and 2012) and LUC official maps of Portugal (Carta de Ocupação do Solo, COS 2007 and 2010) provided by the European Environment Agency (EEA) and the General Directorate for Territorial Development (DGT). Each LUC dataset has undergone vector-to-raster conversion, with different resolutions (10, 25, 50, 100, and 200 m). LUCC were analyzed based on the vector GI of each LUC dataset, and with LUC raster outputs using different resolutions. Initially, it was observed that the areas with different LUC types in two LUC datasets in vector format were not similar—a fact explained by the different properties of this type of GI. When using raster GI to perform the analysis of LUCC, it was observed that at high resolutions, the results are identical to the results obtained when using vector GI, but this ratio decreases with increased cell size. In the analysis of LUCC results obtained with raster LUC GI, the outputs with pixel size greater than 100 m do not follow the same trend of LUCC obtained with high raster resolutions or using LUCC obtained with vector GI. These results point out the importance of the factor form and the area of the polygons, and different effects of amalgamation and dilation in the vector-to-raster conversion process, more evident at low resolutions. These findings are important for future evaluations of LUCC that integrate raster GI and vector/raster conversions, because the different LUC GI resolution in line with accuracy can explain the different results obtained in the evaluation of LUCC. The present work demonstrates this fact, i.e., the effects of vector-to-raster conversions using various resolutions culminated in different results of LUCC.
doi:10.3390/ijgi7100390 fatcat:kafz2rjgzbhfbex3qwc24i3zjy