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Abstract. We consider strictly hyperbolic systems of conservation laws whose characteristic
fields are not genuinely nonlinear, and we introduce a framework for the nonclassical shocks generated
by diffusive or diffusive-dispersive approximations. A nonclassical shock does not fulfill the Liu
entropy criterion and turns out to be undercompressive.

We study the Riemann problem in the class of solutions satisfying a single entropy inequal-
ity, the only such constraint available for general diffusive-dispersive approximations. Each non-
genuinely nonlinear characteristic field admits a two-dimensional wave set , instead of the classical
one-dimensional wave curve. In specific applications, these wave sets are narrow and resemble the
classical curves. We find that even in strictly hyperbolic systems, nonclassical shocks with arbitrarily
small amplitudes occur. The Riemann problem can be solved uniquely using nonclassical shocks,
provided an additional constraint is imposed: we stipulate that the entropy dissipation across any
nonclassical shock be a given constitutive function. We call this admissibility criterion a kinetic

relation, by analogy with similar laws introduced in material science for propagating phase bound-
aries. In particular, the kinetic relation may be expressed as a function of the propagation speed. It
is derived from traveling waves and, typically, depends on the ratio of the diffusion and dispersion
parameters.
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1. Introduction. In this paper, we consider discontinuous solutions to hyper-
bolic systems of conservation laws that do not fulfill the classical entropy criteria,
carrying over to systems the discussion we initiated in [22] for scalar equations with
nonconvex fluxes. We develop a framework for the existence and uniqueness of the
nonclassical shock waves that arise as limits of diffusive-dispersive approximations.
It is natural to constrain the solutions to the hyperbolic system with an entropy in-
equality for a single, strictly convex entropy pair. This condition is weaker than the
Liu [41] entropy criterion.

A nonclassical shock is defined as one that does not satisfy the Liu criterion.
It turns out that such a shock is undercompressive: the number of characteristics
impinging on the discontinuity is smaller than that imposed by the (classical) Lax
shock inequalities. Such waves are underdetermined (in the sense of linear analysis)
and sensitive to the form of the diffusive-dispersive mechanism.

The focus of this work is on strictly hyperbolic systems where one (or more)
characteristic field lacks genuine nonlinearity, such as those describing the dynamics of
elastic materials or magnetic fluids. A key observation is that undercompressive shocks
may arise for such systems through balanced diffusive and dispersive mechanisms: this
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is the case even for shocks having arbitrary small amplitude. We concentrate here
on the Riemann problem which is fundamental in the theory of conservation laws.
A typical Riemann solution combines classical (shock and rarefaction) waves and
nonclassical shocks. The numerical analysis of nonclassical shocks is investigated in a
companion paper [23].

We build here upon extensive activity on undercompressive waves for nonstrictly
hyperbolic systems and systems with change of type. In the examples studied in
the literature, the undercompressive waves have finite strength; they were found to
be necessary in order to solve the Riemann problem and, therefore, reflect a prop-
erty of the flux-function of the system. We refer the reader to Azevedo et al. [3],
Freistühler [18], Isaacson, Marchesin, and Plohr [28], Isaacson et al. [27], Keyfitz [31],
Liu and Zumbrun [46, 47], Schecter and Shearer [52], Slemrod [59], and the references
therein.

The basic concepts and the analysis of the traveling waves associated with such
nonstandard discontinuities and a resolution of the Riemann problem for some math-
ematical models can be also found in [28, 32, 44, 45, 58]. The large-time asymptotic
stability of under- or overcompressive shocks (the number of impinging characteristics
in the latter is larger) is proven in [19, 43, 46, 47]. Liu and Zumbrun observe [47]
that, for undercompressive shocks, the asymptotic state for large times cannot be
determined solely from the mass of the initial perturbation, but must also take into
account the diffusive effects of a parabolic augmented system of equations.

Several examples from continuum mechanics are known to exhibit undercompres-
sive shocks. The system of magnetohydrodynamics lacks both genuine nonlinearity
and strict hyperbolicity (Brio and Wu [5]). It has been observed numerically, as well as
analytically, that nonstandard shock waves not fulfilling the classical entropy criteria
arise with certain approximations.

MHD shocks may be either undercompressive or overcompressive. Those shocks
are called nonstandard or intermediate in the MHD literature and are critical to
the understanding of important phenomena such as the effect of the solar wind (Wu
[63]). For various results on the Riemann problem for a rotationally invariant model
in MHD, we refer to [4, 6, 8, 17, 32, 65]. See also [21] for another model. There
is also an extensive literature on phase boundaries in materials admitting phase
transformations of the austenite-martensite type. When the stress-strain relation
for a material is decreasing on an interval, the system of elastodynamics is of the
hyperbolic-elliptic type. Propagating phase boundaries are still another example of
undercompressive waves. They are fundamental to understanding phase transforma-
tion processes. See [15, 26, 56, 57, 59] as well as [1, 2, 38, 61, 62]. See also [48] for a
general review on the nonlinear waves arising in fluids and materials, with or without
phase transitions.

A pioneering study of the effect of vanishing diffusion and dispersion terms in
scalar conservation laws can be found in Schonbek [53] using the compensated com-
pactness method. She proved a convergence theorem toward weak solutions. LeFloch
and Natalini [39] used the concept of measure-valued solution and established conver-
gence results assuming that the diffusion dominates the dispersion.

The works by Wu [64] and Jacobs, McKinney, and Shearer [30] established the first
existence result of undercompressive shocks for the modified KdV–Burgers equation
and motivated us in [22].

The present series of papers [22, 23] is intended as a contribution toward unifying
ideas behind some of the above works. We pursue a better understanding of simple
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models giving rise to undercompressive shocks. Deriving entropy criteria for their
selection is one of the main challenges in the field. The classical criteria developed by
Dafermos [10, 11, 12], Lax [34, 35], Liu [41, 42], Oleinik [50], etc., cannot be applied
directly. In contrast to previous works, we focus here primarily on strictly hyperbolic
systems having nongenuinely nonlinear characteristic fields.

Given a strictly convex entropy pair, we first endeavor to describe the set of all
solutions to the Riemann problem that satisfy a single entropy inequality. Allowing
nonclassical shocks leads to a lack of uniqueness for the Riemann problem and a multi-
parameter family of solutions can be constructed. Our construction is an extension
to Liu’s theorem on the resolution of the Riemann problem which was based on what
is now called the Liu criterion. This analysis provides a complete description of all
the Riemann solutions generated by any diffusive-dispersive approximation compat-
ible with a given entropy pair (section 2). We observe that characterizing limits of
approximate sequences of solutions to hyperbolic systems via pointwise relations on
the propagating discontinuities in the limiting solution may not be possible in the
most general situation (see, for instance, Glimm [20] and LeFloch and Tzavaras [40]).
In this regard, our analysis is pertinent toward describing the set of all possible such
limits. In our presentation, pointwise constraints are added afterward.

Next we investigate a way of selecting a unique nonclassical solution. We pro-
pose to make the selection based on the entropy dissipation, which is a fundamental
quantity from both mathematical and physical standpoints. We stipulate that the
entropy dissipation of a nonclassical shock be a given function, the “kinetic function.”
It may be assumed, for instance, that the kinetic function depends only on the speed
of the nonclassical shock . We call such an admissibility criterion a kinetic relation by
analogy with similar laws introduced in material science.

Therefore this generalizes to strictly hyperbolic systems the notion of kinetic
relation known for the hyperbolic-elliptic system of phase transitions (Abeyaratne and
Knowles [1, 2] and Truskinovsky [61, 62]; see also LeFloch [38]) and for nonconvex
scalar conservation laws (Hayes and LeFloch [22] and Kulikovsky [33]). The paper by
Truskinovsky [62] includes a review of these issues in material science.

In section 2, we construct a unique solution to the Riemann problem in the class
of nonclassical solutions when the kinetic relation is enforced. For some Riemann data
choosing between the classical solution and the nonclassical one may be still necessary
(see section 2). When a specific augmented system including diffusive/dispersive
effects is provided, the entropy dissipation and therefore the kinetic function can
be determined. Small-scale effects neglected in the mathematical modeling at the
hyperbolic level are essential to understanding the behavior of nonclassical shocks.
The kinetic function can be obtained from the equation of the traveling wave solutions
associated with the diffusive-dispersive model.

Classical and nonclassical shock are very different in nature. The classical shocks
are associated with the continuum spectrum of the traveling wave equation and the
nonclassical shocks with its discrete spectrum. Typically, given a (left) state, and
restricting attention to a given wave family, there exists a one-parameter family of
right states that can be attained with a classical shock, but a single right state can
be attained by a nonclassical shock.

In several systems arising in the applications in continuum mechanics, the entropy
dissipation is related to the total energy and may be viewed as a force driving the
propagation of the nonclassical propagating discontinuities. We also consider here the
Riemann problems with large amplitude for two specific examples of interest: a sys-
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tem from nonlinear elastodynamics based on a nonconvex strain-stress law, which is a
strictly hyperbolic system with two nongenuinely nonlinear fields (sections 3 and 4),
and a model from magnetohydrodynamics, which has an umbilic point and one linearly
degenerate characteristic field (section 5). In these examples we demonstrate numer-
ically that certain diffusive-dispersive approximations generate nonclassical shocks.

The kinetic relation may be used in the design of a numerical scheme consis-
tent with the underlying regularization, avoiding the (costly) resolution of small-scale
effects. Hou, LeFloch, and Rosakis [25] proposed recently, for computing propagat-
ing phase boundaries in a two-dimensional plate, a consistent method based on the
level set formulation. For difference schemes generating nonclassical shocks, one can
consult [23, 24].

2. A framework for nonclassical shocks in systems.

2.1. Preliminaries. Here we shall motivate the definition of nonclassical solu-
tion. Consider a system of hyperbolic conservation laws:

∂tu+ ∂xf(u) = 0, u(x, t) ∈ U ,(2.1)

where U is a convex and open subset of R
N and the flux-function f : U → R

N is
a smooth mapping. We assume that the system is endowed with a strictly convex
entropy pair (U,F ); that is, ∇FT = ∇UTDf and ∇2U(u) ≥ C Id with C > 0. This,
in particular, implies that the system is hyperbolic, although not necessarily strictly
hyperbolic.

Suppose that the “good” solutions to (2.1) according to some underlying physical
interpretation are to be obtained as limits of a diffusive-dispersive approximation
scheme of the form

∂tuε + ∂xf(uε) = ε ∂x
(

B1(uε)∂xuε
)

+ ε2 ∂x
(

B2(uε)∂xxuε
)

(2.2)

as ε → 0 (ε > 0). When B1 and B2 are N × N matrix-valued functions, the reg-
ularization (2.2) (together with the conditions (2.3) below) describes one large class
of systems, which includes the examples in the applications we will be interested in.
(The important issue of the existence of a solution uε satisfying (2.2) is out of the
scope of the present paper.)

We shall say that the pair (U,F ) is compatible with the approximation scheme
(2.2) if the following conditions hold:

• The first term in the right-hand side of (2.2) is dissipative for the entropy U , in
the sense that

∇2U(v)B1(v) is a positive matrix for all v ∈ U .(2.3i)

• The second term in (2.2) is conservative for U , in the sense that there exist
N ×N matrix-valued functions B3 and B4 such that

∂xv
T∇2U(v)TB2(v)∂xxv = ∂t

(

∂xv
TB3(v)∂xv

)

+ ∂x
(

∂xv
TB4(v)∂xv

)

(2.3ii)

for any solution v : R × R+ → U to (2.2), and

B3(v) is a nonnegative matrix for all v ∈ U .(2.3iii)

Note in passing that trivial linear entropies always satisfy (2.3) but are of no use for
our purpose of selecting solutions to (2.1). When (2.3) holds and ∂xuε vanishes at
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infinity, one can (formally) derive from (2.2) an entropy inequality. Indeed we obtain

∂t
(

U(uε) + ε 2 ∂xu
T
ε B3(uε)∂xuε

)

+ ∂xF (uε)

= ε ∂x
(

∇U(uε)
TB1(uε)∂xuε

)

− ε ∂xuε∇2U(uε)B1(uε)∂xuε

+ ε2 ∂x
(

∇U(uε)
TB2(uε)∂xxuε

)

− ε2 ∂x
(

∂xuεB4(uε)∂xuε
)

,

which yields the balance law
∫

R

U(uε(t)) dx + ε2
∫

R

∂xuε(t)
TB3(uε(t))∂xuε(t) dx

+ ε

∫ t

0

∫

R

∂xu
T
ε ∇2U(uε)B1(uε)∂xuε dxds

=

∫

R

U(uε(0)) dx + ε2
∫

R

∂xuε(0)TB3(uε(0))∂xuε(0) dx

(2.4)

for all t ≥ 0 and an entropy inequality for u = limε→0 uε of

∂tU(u) + ∂xF (u) ≤ 0.(2.5)

We observe that
• an arbitrary entropy for (2.1) need not be compatible with the given regular-

ization (2.2), and the inequality (2.5) need not hold for an arbitrary entropy;
• the estimate (2.4) provides an a priori control on uε and its derivatives, which

may be used to apply the compensated compactness method, at least if N ≤ 2. When
the latter applies the sequence uε is shown to converge to a weak solution to (2.1),
(2.5). See [53, 22] and sections 4 and 5 of this paper.

As an illustration, consider the case of a scalar equation (N = 1) and

∂tuε + ∂xf(uε) = ε ∂xxuε + α ε2 ∂xxxuε,(2.6)

where α is a real parameter. It is easily checked that the conditions (2.3) hold for
U(u) = u2 with B1 = 1, B2 = α, B3 = α/2, and B4 = 0. The estimate (2.4) reduces
to

∫

R

uε(t)
2 dx + 2 ε

∫ T

0

∫

R

|∂xuε|2 dxds =

∫

R

uε(0)2 dx,(2.7)

and we get the inequality

∂tU(u) + ∂xF (u) ≤ 0, F ′(u) := u f ′(u).

Observe that, for nonquadratic entropies, (2.3) is generally violated and the inequality
(2.5) does not hold, as was pointed out in Hayes and LeFloch [22].

The scaling in (2.6) is important. The diffusion dominant regularization

∂tuε + ∂xf(uε) = ε ∂xxuε + δ ∂xxxuε(2.8)

with δ = o(ε2) would bring us back to the classical theory of conservation laws, while
the dispersion dominant case (2.8) with ε2 = o(δ) is the subject of the Lax–Levermore
theory [36, 37]. Limiting solutions in the latter case are not weak solutions to (2.1).

This motivates us to constrain the solutions to (2.1) with the single entropy
inequality (2.5). Not surprisingly, when one characteristic field (or more) of the system
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(2.1) is not genuinely nonlinear, the entropy inequality will be shown to be too lax
to guarantee uniqueness even for the Riemann problem. The forthcoming analysis is
built upon this elementary observation.

Our analysis in [22] of the nonclassical shocks for scalar conservation laws relied
on the violation of the Oleinik criterion. For systems we shall say that a shock is
classical if it satisfies the Liu criterion. Definition 2.1 restates this concept.

Definition 2.1. A propagating discontinuity is called a nonclassical shock when
it satisfies the entropy inequality (2.5) but does not fulfill the Liu entropy criterion
(see (2.18) below).

2.2. Nonclassical Riemann solutions. We now study the Riemann problem
for nongenuinely nonlinear systems.

• Liu has constructed a unique entropy solution to the Riemann problem for such
systems [41, 42]. In his construction, every shock satisfies what is now called the Liu
criterion. This is described in Lemma 2.3.

• When a single entropy inequality is used, the class of admissible solutions is
larger (Lemma 2.5) and undercompressive shocks are found near a curve where genuine
nonlinearity breaks down (see Lemma 2.4).

• We construct a multiparameter family of solutions to the Riemann problem in
Theorem 2.6. In our construction, there are two analogous cases corresponding to a
minimum or a maximum of the wave speed at the point where genuine nonlinearity
is lost.

This extends Liu’s construction to encompass all possible limits of diffusive-
dispersive approximations compatible with a given entropy pair (U,F ). A further
admissibility criterion will be necessary to ensure uniqueness of the entropy solution.
This will be developed in subsection 2.3.

Remark 2.2. Liu’s criterion is consistent with the regularization (2.2) with
B1(u) = I and B2(u) = 0. The latter regularization happens to be compatible with
any convex entropy to (2.1) since, then, (2.3i) is equivalent to the convexity assump-
tion on U and (2.3ii) and (2.3iii) are trivially satisfied. Henceforth the inequalities
(2.5) in this particular case hold for all convex entropy pairs. However, the Liu cri-
terion need not be satisfied by limits of more general diffusive approximations or by
diffusive-dispersive ones.

We now assume that U := B(u∗, R) is a ball with center u∗ and radius R > 0, and,

for each u and u′ in U , the matrix A(u, u′) :=
∫ 1

0
Df(mu+ (1 −m)u′) dm admits N

real and distinct eigenvalues λ̄1(u, u
′) < λ̄2(u, u

′) < · · · < λ̄N (u, u′) and corresponding
basis of right eigenvectors r̄j(u, u

′) and left eigenvectors l̄j(u, u
′). Throughout this

section we normalize the basis so that l̄j(u, u
′) · r̄j(u, u′) = δij .

It is assumed that the wave speeds λj(u, u
′) are strictly separated in the sense

that there exist disjoint intervals
[

λmin
j , λmax

j

]

, j = 1, 2, . . . , N , such that

λmin
j < λ̄j(u, u

′) < λmax
j(2.9)

for all u, u′ ∈ U . We also set λj(u) := λ̄j(u, u), rj(u) := r̄j(u, u), and lj(u) := l̄j(u, u).
When (2.1) is strictly hyperbolic, the condition (2.9) is satisfied if U is a sufficiently
small neighborhood of u∗.

We are interested in systems admitting N − P genuinely nonlinear characteristic
fields and P ≤ N nongenuinely nonlinear characteristic fields. In the latter case the
scalar-valued function u→ ∇λj(u) · rj(u) does not keep a constant sign. We assume
that there is a subset with P elements, P ⊂

{

1, 2, . . . , N
}

such that, for j /∈ P,
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∇λj(u) · rj(u) > 0 for all u (after suitable normalization of the eigenvectors), and for
j ∈ P, the set

Mj =
{

u ∈ U |∇λj(u) · rj(u) = 0
}

is a smooth affine manifold with dimension N − 1 containing the point u∗. For
simplicity in the presentation we do not include linearly degenerate fields.

We denote by µj(u) a scalar-valued function satisfying ∇µj · rj ≡ 1. When the
j-field is genuinely nonlinear, one takes µj(u) = λj(u). The function µj will be used
to parameterize the wave curves. We assume that µj can be chosen such that

µj(u) = 0 iff ∇λj(u) · rj(u) = 0,

and either

Case A: µj(u) and ∇λj(u) · rj(u) have the same sign,(2.10a)

or

Case B: µj(u) and ∇λj(u) · rj(u) have the opposite sign.(2.10b)

In particular ∇λj · rj changes sign across Mj . In Case A, µj(u) = 0 is associated
with a minimum of the wave speed, while in Case B it is associated with a maximum.
In the scalar case, (2.10a) means that there is a state u∗ such that the function f
is strictly concave for u < u∗ and strictly convex for u > u∗. Typical examples are
f(u) = u3 in the case (2.10a) and f(u) = −u3 in the case (2.10b); in both cases one
can choose µ(u) = u. As we will see, the cases (2.10a) and (2.10b) lead to wave curves
with different properties.

The Riemann problem, (2.1) with initial data

u(x, 0) =

{

ul for x < 0,

ur for x > 0,
(2.11)

and ur and ul fixed in U , plays an important role in the theory of hyperbolic conserva-
tion laws. Since the problem is invariant under the transformation (x, t) → (β x, β t)
(with β > 0), it is natural to search for self-similar solutions depending only on x/t.
We now define the one-parameter families of shock and rarefaction waves to be used
as building blocks in the resolution of the Riemann problem.

Given a state u0 ∈ U and j = 1, 2, . . . , N , let Oj(u0) =
{

vj(εj ;u0) ∈ U
}

be the
integral curve of the vector field rj issued from u0, so that

dvj
dεj

(εj ;u0) = rj
(

vj(εj ;u0)
)

, vj(εj,0;u0) = u0.(2.12)

Note that rj(u0) is the tangent vector of the curve Oj(u0) at the point u0. Using the
normalization of the function µj , one checks that

µj

(

vj(εj ;u0)
)

= εj ;

therefore there should be no confusion in using the notation muj = εj . In other words,
µj is viewed as both a function of u and as a parameter along the wave curves.
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We also consider the Hugoniot locus

Hj(u0) :=
{

w | − s
(

w − u0

)

+ f(w) − f(u0) = 0
}

.(2.13)

The Rankine–Hugoniot relation is equivalent to saying that there exists an index j
and a scalar-valued coefficient α(u0, w) such that

w − u0 = α(u0, w) r̄j(u0, w), s = λ̄j(u0, w).(2.14)

By the implicit function theorem, the Hugoniot set decomposes (locally near u0, at
least) into N Hugoniot curves Hj(u0) =

{

wj(µj ;u0) ∈ U
}

, passing through u0 and
having the tangent vector rj(u0) at u0. Since ∇µj · rj > 0, the coefficient α(u0, wj)
in (2.14) has the same sign as that of µj(wj) − µj(u0). Along the j-curve, the shock
speed satisfies

λ̄j(u0, wj) = λj(u0) +
µj

2
∇λj(u0) · rj(u0) +O(µ2

j ).(2.15)

Taking a suitable subset B(u∗, R
′) of U = B(u∗, R) if necessary, one can assume

that the curves Oj(u0) and Hj(u0) extend up to the boundary of U . Furthermore
we assume that, for j ∈ P, these curves are transverse to the manifold Mj : each
Hugoniot curve and each integral curve intersect the manifold at exactly one point.
Observe that when R is small enough, it is sufficient to assume that the vector field
rj is transverse to the manifold Mj . Our construction here applies, however, to the
case that R is not necessarily small. The tranversality assumption implies that, for
j ∈ P, the wave speed µj → λj

(

vj(µj ;u0)
)

has exactly one critical point along each
integral curve. It will be checked in Lemma 2.3 below that, for j ∈ P, the shock speed
µj → λ̄j(u0, wj(µj ;u0)) also admits (at most) one critical point along the Hugoniot
curve.

Finally we introduce another assumption about the Hugoniot curve, for all wj(µj ;u0)

with µj 6= µj(u0),

lj(wj) ·
dwj

dµj
> 0,(2.16i)

(

µj − µj(u0)
)

lj(wj) · (wj − u0) > 0.(2.16ii)

Both conditions in (2.16) trivially hold for weak shocks, since lj(u0) · rj(u0) = 1.
Discontinuous solutions being not unique in general, it is customary to select the

“admissible” weak solutions via an entropy criterion acting on discontinuities. From
physical, mathematical, and numerical standpoints, it is desirable that an admissible
solution to the Riemann problem exist, be unique, and depend continuously upon its
initial states in a certain topology. In the classical approach, a wave curve Wj(u) is
indeed defined by piecing together (admissible) parts of the above curves. The Lax
shock inequalities [34, 35] are fundamental for stability and are used for weak shocks
in the neighborhood of a point of genuine nonlinearity. A j-shock connecting u0 to
u1 with speed λj(u0, u1) is admissible in the sense of Lax iff

λj(u0) ≥ λ̄j(u0, u1) ≥ λj(u1).(2.17)

Note that the inequalities λj−1(u0) < λ̄j(u0, u1) < λj+1(u1) are obtained as a direct
consequence of (2.9). When the characteristic fields are genuinely nonlinear, applying
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the Lax criterion leads to uniquely defined wave curves and to a unique solution for the
Riemann problem. Each wave curve contains two distinct parts, half of the Hugoniot
curve and half of the integral curve.

When one or more characteristic fields are not genuinely nonlinear, Liu proposed
that, along the Hugoniot curve Hj(u0), the following criterion holds:

λ̄j(u0, wj(µj ;u0)) ≥ λ̄j(u0, u1)(2.18)

for all µj between µj(u0) and µj(u1); in other words, the shock speed for µj in the
above range achieves its minimum at the point u1. Liu [42] constructed a unique
wave curve based on the condition (2.18). The wave curves may be composed of more
than two pieces, and the Riemann solution contains composite waves mixing shocks
and rarefactions.

It is known that (2.8), (2.17), and (2.18) are equivalent for shocks of weak ampli-
tude and genuinely nonlinear fields. This is not true for systems having nongenuinely
nonlinear fields. In the present paper we attempt to construct a wave curve based on
(2.5) of the wave curves of Liu. However, instead of one-parameter wave curves we
arrive here to two-parameter sets, which we call “wave sets.” In this construction it
is important to distinguish several types of discontinuities.

An arbitrary j-shock connecting u0 to u1 can be either a Lax shock , in which case
(2.17) holds, an undercompressive shock satisfying either

λ̄j(u0, u1) ≤ min
(

λj(u0), λj(u1)
)

or(2.19)

λ̄j(u0, u1) ≥ max
(

λj(u0), λj(u1)
)

,(2.20)

or a rarefaction shock :

λj(u0) < λ̄j(u0, u1) < λj(u1).(2.21)

The properties of the wave speeds and shock speeds are described in Lemmas 2.3
and 2.4. (See Figure 2.1 for a graphical representation.) The entropy dissipation is
dealt with in Lemma 2.5.

Lemma 2.3. Let u0 be given with µj(u0) > 0 and consider the Hugoniot curve
Hj(u0) for = j = 1, 2, . . . , N . Suppose that (2.10a) (resp., (2.10b)) holds. Then
the wave speed µj → g(µj ;u0) := λj(wj(µj ;u0)) is decreasing (resp., increasing) for
µj < 0 and increasing (resp., decreasing) for µj > 0 and achieves its minimum (resp.,
maximum) at µj = 0.

There exists µ?
j (u0) ≤ 0 such that the shock speed µj → h(µj ;u0) := λ̄j(u0, wj(µj ;u0))

is decreasing (resp., increasing) for µj < µ?
j (u0) and increasing (resp., decreasing) for

µj > µ?
j (u0) and achieves its minimum (resp., maximum) at µ?

j (u0).
The wave speed and the shock speed coincide at the critical value of the shock

speed:

g(µ?
j (u0);u0) = h(µ?

j (u0);u0).(2.22)

Moreover we have in case (2.10a)

h(µj ;u0) − g(µj ;u0) > 0 for µj ∈
(

µ?
j (u0), µj(u0)

)

,

h(µj ;u0) − g(µj ;u0) < 0 for µj < µ?
j (u0) or µj > µj(u0),

(2.23a)



950 BRIAN T. HAYES AND PHILIPPE G. LeFLOCH

λj(u)

(u  , u  )
0 1

0 µ 0 µ
j 0

Figure 2.1a

λj

jj
µ **(u  )

0
*(u  ) (u  )

λ

µ

µ

0*
j

j

j

(u  )
0

(u  )
0

λ
j
(u  , u  )

0 1

µ
j
(u  )(u  ) 0**

0

µ
j

Figure 2.1b

Fig. 2.1. Wave speed and shock speed for (a) the case (2.10a), (b) the case (2.10b).

and in the case (2.10b) we have

h(µj ;u0) − g(µj ;u0) < 0 for µj ∈
(

µ?
j (u0), µj(u0)

)

,

h(µj ;u0) − g(µj ;u0) > 0 for µj < µ?
j (u0) or µj > µj(u0).

(2.23b)

When µj(u0) = 0, the same properties hold with µ?
j (u0) = 0.

Lemma 2.3 includes, as a special case, the situation that the point wj(µ
?
j (u0);u0)

belongs to the boundary of U , in which case
{

µj < µ?
j (u0)

}

is empty. We denote by
µ??
j (u0), with µ??

j (u0) < µ?
j (u0), the point of the Hugoniot curve such that

h(µ??
j (u0);u0) = h(µj(u0);u0)(2.24)

when such a point exists. In the following, we tacitly assume that both points, µ?
j (u0)

and µ??
j (u0), exist and belong to the interior of U , the discussion below being much

simpler in other cases. Lemma 2.3 is due to Liu [42] and, for completeness, a proof is
given in the appendix.

Lemma 2.4. Let u0 be given with µj(u0) ≥ 0 and consider the Hugoniot curve
Hj(u0).

(1) Suppose that (2.10a) holds. A shock connecting u0 to u1 = wj(µj(u1);u0) is

a rarefaction shock if µj(u1) > µj(u0) or µj(u1) < µ??
j (u0);

a Lax shock if µj(u1) ∈
[

µ?
j (u0), µj(u0)

]

;

an undercompressive shock if µj(u1) ∈
[

µ??
j (u0), µ

?
j (u0)

)

.

(2.25a)

In the second case the shock also satisfies the (stronger) Liu criterion.
(2) Suppose that (2.10b) holds. A shock connecting u0 to u1 = wj(µj(u1);u0) is

a Lax shock if µj(u1) ≥ µj(u0) or µj(u1) ≤ µ??
j (u0);

a rarefaction shock if µj(u1) ∈
(

µ?
j (u0), µj(u0)

)

;

an undercompressive shock if µj(u1) ∈
(

µ??
j (u0), µ

?
j (u0)

]

.

(2.25b)
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In the first case the shock also satisfies the (stronger) Liu criterion.
Lemma 2.5. Let u0 be given with µj(u0) ≥ 0 and consider the Hugoniot curve

Hj(u0). Suppose that (2.10a) (resp., (2.10b)) holds.
(1) The entropy dissipation µj → D(u0, wj(µj ;u0)) vanishes at µj(u0) and at a

point µ[[
j (u0) in the interval

(

µ??
j (u0), µ

?
j (u0)

)

. The entropy dissipation is decreasing
(resp., increasing) for µj < µ?

j (u0), increasing (resp., decreasing) for µj > µ?
j (u0),

and achieves a negative maximum value (resp., a positive maximum value) at the
critical point of the wave speed, that is, µ?

j (u0).
(2) A shock satisfying (2.8) cannot be a rarefaction shock. As a corollary, a

nonclassical shock is undercompressive and satisfies µj ∈
(

µ[[
j (u0), µ

?
j (u0)

)

(resp.,

µj ∈
(

µ??
j (u0), µ

[[
j (u0)

)

).
(3) Any shock satisfying the Liu criterion (2.18) also satisfies the entropy in-

equality (2.8).
For ul and ur given in U , the Riemann problem (2.1), (2.11) admits up to a P -

parameter family of solutions containing N separated wave fans, each of them being
composed of (at most) two waves. Specifically we obtain the following description of
the classical and nonclassical waves.

Consider a j-wave fan with left-hand state u0 and right-hand state u with µj(u0) ≥
0. For j /∈ P, the wave fan is either a rarefaction wave if µj(u) > µj(u0), or a classical
shock if µj(u) < µj(u0). For j ∈ P, we have the following.

Case A. Assume that (2.10a) holds and j ∈ P. Assume first that µj(u0) > 0.
The j-wave fan using only classical waves contains

(1) either a rarefaction from u0 to u ∈ Oj(u0) if µj(u) > µj(u0),
(2) a classical shock from u0 to u ∈ Hj(u0) if µj(u) ∈

(

µ?
j (u0), µj(u0)

)

,

(3) or a classical shock from u0 to u? := wj(µ
?(u0);u0

)

followed by an attached
rarefaction connecting to u ∈ Oj(u

?) if µj(u) < µ?
j (u0).

This completes the description of the classical wave curve Wc
j (u0) for Case A.

THEOREM 2.6A. The j-wave fan may also contain a nonclassical j-shock connect-
ing u0 to any state u[ ∈ Hj(u0) with µj(u

[) ∈
(

µ[[
j (u0), µ

?
j (u0)

)

followed by

(1) either a nonattached rarefaction connecting u[ to u ∈ Oj(u
[) if µj(u)<µj(u

[),
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(2) or by a classical shock connecting u[ to u ∈ Hj(u
[) if µj(u) > µj(u

[).
This defines a two-parameter family of u that can be reached from u0 by nonclas-

sical solutions. For a given u[, the classical shock with largest strength and connecting
u[ to some u = u] ∈ Hj(u

[) is characterized by the condition λ̄j(u
[, u]) = λ̄j(u0, u

[)
and, in that situation, one also has u] ∈ Hj(u0). In particular the nonclassical shock
with largest possible strength connects the point u[[ := wj(µ

[[
j (u0);u0) to the point

u]] := wj(µ
]](u0);u

[[), where µ]](u0) is defined by u]] ∈ Hj(u0). Moreover one has

µ??
j (u0) ≤ µ[[

j (u0) ≤ µ[
j(u0) ≤ µ?

j (u0) ≤ µ]
j(u0) ≤ µ]]

j (u0) ≤ µj(u0).(2.26)

In the special case that µj(u0) = 0, the j-wave curve is the j-integral curve issuing
from u0.

Case B. Assume that (2.10b) holds and j ∈ P. Assume first that µj(u0) > 0.
The j-wave fan using only classical waves contains

(1) either a classical shock connecting u0 to u ∈ Hj(u0) if either µj(u) ≥ µj(u0)
or µj(u) ≤ µ??

j (u0),

(2) a rarefaction connecting u0 to u ∈ Oj(u0) if µj(u) ∈
[

0, µj(u0)
]

,
(3) or a rarefaction wave connecting u0 to a point u1, followed by an attached

classical shock connecting to u ∈ Hj(u1) with µj(u) = µ??
j (u1), if µj(u) ∈

(

µ??
j (u0), 0

)

.
(In this case the set of u does not describe a rarefaction or shock curve.)

This completes the description of the classical wave curve Wc
j (u0).

THEOREM 2.6B. The j-wave fan may also contain
(1) either a rarefaction to u ∈ Oj(u0) if µj(u) ∈

(

0, µj(u0)
)

, possibly followed by

a nonattached nonclassical shock connecting u1 to u, if µj(u) ∈
(

µ??
j (u1), µ

[[
j (u1)

)

(in
this case the set of u does not describe a rarefaction or shock curve),

(2) or a classical shock to u1 ∈ Hj(u0) with µj(u1) > µj(u0), followed by a
nonclassical shock connecting to u ∈ Hj(u1), if µj(u) ∈

(

µ??
j (u1), µ

[[
j (u1)

)

.
This defines a two-parameter family of u that can be reached from u0 by nonclas-

sical solutions.
Assume finally that µj(u0) = 0. Then the j-wave curve is the j-Hugoniot curve

issuing from u0 and correspond to classical shocks.
Based on these results, we introduce the following terminology. Given u0, the

set of all states that can be reached using only j-waves will be called the j-wave set
issuing from u0 and be denoted by Sj(u0) by analogy with the notion of j-wave curve
known for classical solutions. We shall call a curve in the wave set a composite curve
when it is not a part of a rarefaction or shock curve. The wave set in both cases
(2.10a) and (2.10b) is represented in Figures 2.3(a) and 2.3(b), respectively. The case
that µj(u0) < 0 is analogous and is omitted. We now give a proof of Lemmas 2.4 and
2.5 and Theorem 2.6.

Remark 2.7. (1) Our analysis shows that, under the assumptions made in this
section, the Lax inequalities and the Liu criterion are equivalent (Lemma 2.4), which,
at first, may appear surprising. The Lax inequalities are sufficient to select a unique
solution for shocks with small amplitude near a point where ∇λj · rj vanishes. The
Liu criterion is necessary for shocks of moderate amplitude when the product ∇λi · ri
changes sign several times along the Hugoniot curve.

(2) When the system (2.1) has a sufficiently large family of entropies (e.g.,
when N ≤ 2), the formulas (2.28)–(2.29) derived below may be used to establish the
converse of item (3) of Lemma 2.5, i.e., limits of regularizations compatible with all
entropies (such as (2.2) with Dε = ε ∂xuε), necessarily satisfy the Liu criterion.

(3) It may be of interest to search for the weakest constraint on undercompressive
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Fig. 2.3. Wave set Sj(u0) issuing from u0 for (a) the case (2.10a), (b) the case (2.10b).

shocks that can result from imposing one entropy inequality like (2.8). We shall say
that a subset Wmax

j (u0) of U is a maximal j-wave set for the system (2.1) if it contains
all the j-wave sets for arbitrary entropies. For instance a maximal wave set for the
case (2.10a) is obtained by taking µ[[

j (u0) = µ??
j (u0) in Theorem 2.6; this follows

readily from the formula (2.28)–(2.29). In the scalar case with N = 1 and f(u) = u3,
one has µj(u0) = u0 and µ??

j (u0) = −2u0. The scalar case is degenerated and
Wc(u0) = Wnc(u0) = Wmax(u0) = R; the interval [−2u0, u0] is the maximal interval
of states that can be reached from u0 by using a classical or nonclassical shock.

Proof of Lemma 2.4. Consider for instance the case (2.10a), the case (2.10b) being
similar. Lemma 2.3 states that the function µj → λ̄j(u0, wj(µj ;u0))− λ̄j(wj(µj ;u0))
is positive for µj > µ?

j (u0) and negative for µj < µ?
j (u0). On the other hand the

function µj → λ̄j(u0, wj(µj ;u0)) − λj(u0) is positive for µj < µ??
j (u0) or µj > µj(u0)

and negative for µj ∈
(

µ??
j (u0), µj(u0)

)

. The classification follows easily from these
two properties.

Proof of Lemma 2.5. Using the compatibility condition on the entropy pair, i.e.,
∇FT = ∇UTDf , and the Rankine–Hugoniot relation (2.13), the entropy dissipation
for a shock connecting u0 to wj(µj ;u0) is found to be

D(u0, wj(µj ;u0))

=

∫ µj

µj(u0)

∇U(wj(ζj))
{

λ̄j(u0, wj(µj)) −Df(wj(ζj))
} dwj

dζj
(ζj) dζj ,

=

∫ µj

µj(u0)

dwj

dζj
(ζj) · ∇2U(wj(ζj))

{

λ̄j(u0, wj(ζj))
(

wj(ζj) − u0

)

− f(wj(ζj)) + f(u0)
}

dζj .

(2.27)
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Using once more the Rankine–Hugoniot relation, we get

D(u0, wj) =

∫ µj

µj(u0)

{

λ̄j(u0, wj(µj)) − λ̄j(u0, wj(ζj))
}

mj(ζj) dζj ,(2.28)

where

mj(ζj) :=
dwj

dζj
(ζj) · ∇2U(wj(ζj))

(

wj(ζj) − u0

)

(2.29)

has the same sign as µj − µj(u0). The system (2.1) being strictly hyperbolic, it can
be checked that

dwj

dµj
· ∇2U(wj) = lj(wj),

which, combined with (2.16ii), shows that mj(ζj) > 0 for ζj 6= µj(u0).
The occurrence of nonclassical shocks depends on the sign of the entropy dissi-

pation. The integrand in (2.28) has the same sign as λ̄j(u0, wj(µj)) − λ̄j(u0, wj(ζj)),
which is nonpositive when the Liu entropy criterion (2.18) holds. It follows that the
entropy dissipation is negative as long as the Liu criterion holds. This proves item
(3) of Lemma 2.5.

When, instead, the shock satisfies the inequalities (2.21), we have

λ̄j(u0, wj(µj)) − λ̄j(u0, wj(ζj)) ≥ 0.(2.30)

This indeed is an easy consequence of the facts that µj → λ̄j(u0, wj(µj)) is a monotone
function (see Lemma 2.3) and that λ̄j(u0, u0) = λj(u0) ≤ λ̄j(u0, wj(µj)). Combining
(2.28) and (2.30) shows that the entropy dissipation is negative for rarefaction shocks.
This proves item (2) of Lemma 2.5.

Finally we can establish item (1) by differentiating the formula (2.28) with respect
to µj :

∂

∂µj
D(u0, wj) =

∫ µj

µj(u0)

∂

∂µj
λ̄j(u0, wj)mj(ζj) dζj .

This yields a relation between the derivative of the entropy dissipation and that of
the shock speed:

∂

∂µj
D(u0, wj) = b(wj)

∂

∂µj
λj(u0, wj), b(wj) :=

∫ µj

µj(u0)

mj(ζj) dζj ,(2.31)

with C1 |wj − u0|2 ≤ b(wj) ≤ C2 |wj − u0|2 for some positive constants C1 and C2.
Note that the dissipation has a critical point either when the shock speed has a critical
point or at the point u0.

From the properties of the shock speed in Lemma 2.3, it follows therefore that
D(u0, wj) is decreasing for µj < µ?

j (u0) and increasing for µj > µ?
j (u0). From its

definition, it is clear that D(u0, wj) vanishes at µj(u0). Moreover, we checked that it
is positive for µj < µ??

j (u0). Therefore there exists a unique point, say, µ[[
j (u0), in the

interval
(

µ??
j (u0), µ

?
j (u0)

)

where the dissipation vanishes. This completes the proof of
Lemma 2.5.

Proof of Theorem 2.6. We construct the wave set Sj(u0) for u0 ∈ U and j ∈ P.
The construction for j /∈ P is classical and Sj(u0) is the classical wave curve Wj(u0).
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Case A. For u0 ∈ Mj , either of the conditions (2.8) or (2.18) shows that the wave
set Wnc

j (u0) coincides locally with the integral curve Oj(u0). This is because the wave
speed is increasing when moving away from u0 in either direction. The construction
is complete for u0 ∈ Mj .

We now consider a point u0 away from the manifold. For definiteness we assume
that µj(u0) > 0; the other case could be treated similarly. The construction of the
wave curve will use the values µ??

j (u0) < µ?
j (u0) ≤ µj(u0) introduced in Lemma 2.3.

For µj > µj(u0), the state u0 can be connected to any point on Oj(u0) since
the wave speed λj is increasing for µj increasing. Therefore the wave curve Wj(u0)
coincides with the rarefaction curve Oj(u0) for µj ≥ µj(u0).

For µj decreasing from µj(u0), the shock speed is decreasing as long as µj re-
mains larger than the critical value µ?

j (u0). Therefore all the points in the Hugoniot
curve Hj(u0) with µj ∈ [µ?

j (u0), µj(u0)] can be reached from u0 by a classical shock
satisfying the Liu criterion. According to Lemma 2.5, the entropy dissipation remains
negative in the whole range µj ∈ [µ[[

j (u0), µj(u0)]. Thus the points of the Hugoniot

curve Hj(u0) with µj ∈ [µ[[
j (u0), µ

?
j (u0)] can also be reached from u0 but, now, with

a nonclassical shock.
These are the only admissible solutions with a single j-wave issuing from u0.
Consider now an admissible one-wave solution joining u0 to u1. If µj(u1) >

µ?
j (u0), then no further j-wave can be constructed from u1. The state u?1 with µj(u1) =
µ?
j (u0) can be connected to any point u2 in the rarefaction curve Oj(u1) with µj(u2) ≤
µ?
j (u0). This covers the whole range of values µj and corresponds to the classical wave

curve.
We now describe all nonclassical solutions with two j-waves. Consider an admis-

sible one-wave solution joining u0 to u[ with µj(u
[) ∈

[

µ[[
j (u0), µ

?
j (u0)

)

. According to

Lemma 2.3, the wave speed is increasing with µj decreasing from µj(u
[), so u[ can

be connected to any point u2 in the rarefaction curve Oj(u
[) with µj(u2) ≤ µj(u

[).
Observe that the nonclassical shock is not attached to the rarefaction fan, i.e.,

λ̄j(u0, u
[) < λj(u

[).(2.32)

This describes all the solutions containing a nonclassical shock followed by a rarefac-
tion; no further j-wave may follow the rarefaction.

Consider again an admissible one-wave solution joining u0 to u[ with µj(u
[) ∈

[

µ[[
j (u0), µ

?
j (u0)

)

. By (2.32), the shocks with small strength issuing from u[ have a

larger speed than that of the nonclassical shock, i.e., λ̄j(u
[, u2) ≈ λj(u

[) > λ̄j(u0, u
[)

for all states u2 close to u[. Hence the speeds have the proper ordering and u[ may be
connected to any u2 ∈ Hj(u

[), at least in the small. Such a shock is also admissible
(according to the Liu criterion) since the wave speed is decreasing when µj increases
(Lemma 2.3.).

This construction can be continued, for u[ fixed, until u2 violates either of the
two conditions

λ̄j(u
[, u2) > λ̄j(u0, u

[) or(2.33)

D(u[, u2) ≤ 0.(2.34)

Actually, as µj(u2) increases from µj(u
[), one reaches a maximum value µ]

j , in which
equality holds in (2.33), while the shock is still classical and therefore (2.34) still holds.
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To check the latter, consider the graphs of the two functions h(µj) := λ̄j(u0, wj(µj ;u0))

and k(µj) := λ̄j(u
[, wj(µj ;u

[)). See Figure 2.4(a). By symmetry of the Rankine–
Hugoniot relation, one has λ̄j(u

[, u0) = λ̄j(u0, u
[), so

s := h(µj(u
[)) = k(µj(u0)).(2.35)

In view of their monotonicity properties, the two graphs must intersect at exactly one
point µ]

j in the interval
(

µj(u
[), µj(u0)

)

. We define u]2 by the conditions µj(u
]
2) = µ]

j

and u]2 ∈ Hj(u
f lat).

We claim that, actually,

h(µ]
j) = k(µ]

j) = s and u]2 ∈ Hj(u0).(2.36)

Namely, from the Rankine–Hugoniot relations

−s
(

u[ − u0

)

+ f(u[) − f(u0) = 0 and − s
(

u]2 − u[
)

+ f(u]2) − f(u[) = 0,

we deduce that −s
(

u]2 − u0

)

+ f(u]2) − f(u0) = 0, which proves (2.36).

It follows (see Figure 2.4(a)) that (2.33) holds for all µj(u2) < µj(u
]
2), and the

equality holds in (2.33) at the critical value u]2. Moreover, since µj(u
]
2) < µ?

j (u0), the

shock speed is decreasing on the interval
(

µj(u
[), µj(u

]
2)
)

and any shock from u[ to

u2 (with µj(u2) ≤ µj(u
]
2)) satisfies the Liu criterion.

We have the inequalities µj(u
[) < µ?

j (u0) < µj(u
]
2) < µj(u0). As µj(u

[) increases,

µj(u
]
2) decreases and eventually both quantities approach the limiting value µ?

j (u0).

As µj(u
[) decreases, µj(u

]
2) increases and eventually µj(u

[) approaches the limiting

value µ[[
j (u0), while µj(u

]
2) approaches some limiting value, say, µ]]

j (u0). It is tedious
but straightforward to check from the properties of the wave speeds that no third
wave can follow a two-wave fan. See Figure 2.2(a) for a representation of the wave
set Sj(u0).

Case B. For u0 ∈ Mj , it is not hard to see, using either of the conditions (2.8)
or (2.18), that Wj(u0) coincides locally with the Hugoniot curve Hj(u0). This is
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because the wave speed is decreasing when moving away from u0 in either direction.
The construction is complete for u0 ∈ Mj .

Consider the case µj(u0) > 0. For µj > µj(u0), the state u0 can be connected
to any point on Hj(u0) since the wave speed is decreasing for µj increasing. For
µj < µj(u0), the wave speed is, locally, increasing for µj decreasing. So u0 can
be connected to a point on Oj(u0) by a rarefaction. This remains possible until
µj reaches the value 0. It is also possible to connect any point u1 ∈ Oj(u0) with
µj(u1) ∈

[

0, µj(u0)
]

to a point u2 ∈ Hj(u1) provided

λ̄j(u1, u2) = λj(u1).(2.37)

This construction covers the range µj ∈
[

µ??
j (u0), 0

]

. It is also possible to connect u0

directly to a point u ∈ Hj(u0) with µj(u) ≤ µ??
j (u0), since the shock speed in this

range satisfies the Liu criterion.
This completes the construction of the classical wave curve Wc

j (u0).
We now describe all nonclassical solutions with two j-waves. Consider an ad-

missible one-wave solution from u0 to u1. Suppose first µj(u) ∈
(

0, µj(u0)
)

so that
u1 ∈ Oj(u0). One can connect u1 to u2 ∈ Hj(u0) by a shock provided both conditions

λ̄j(u1, u2) ≥ λ(u1),(2.38)

D(u1, u2) ≤ 0(2.39)

hold. From the graph of the entropy dissipation, we know that (2.39) is equivalent to

µj(u2) ≤ µ[[
j (u0).

In view of the graph of the shock speed, (2.38) reads

µ[[
j (u1) ≤ µj(u2) ≤ µ?

j (u1).

Since we always have µ[[
j (u0) ∈

[

µ??
j (u0), µ

?
j (u0)

]

, it follows that the admissible inter-

val in the case under consideration is µj(u2) ∈
[

µ??
j (u0), µ

[[
j (u0)

]

. Moreover such a
shock is classical only when µj(u2) ≤ µ??

j (u0), that is, only when µj(u2) = µ??
j (u0).

Suppose now that µj(u) ≥ µj(u0) so that u1 ∈ Hj(u0). One can connect u1 to a
point u2 ∈ Hj(u1) provided

λ̄j(u1, u2) ≥ λ̄j(u0, u1)(2.40)

and

D(u1, u2) ≤ 0.(2.41)

The condition (2.41) is equivalent to saying µj(u2) ≤ µ[[
j (u1). As µj decreases from

µ[[
j (u0), the speed λ̄j(u1, u2) satisfies (2.40), decreases, and eventually reaches the

value λ̄j(u0, u1). Since u1 ∈ Hj(u0) and u2 ∈ H(u1), the same argument as in the
case (2.10a) shows that for that value of µj , one has u2 ∈ Hj(u0). This completes the
proof of Theorem 2.6.
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2.3. Selection by kinetic relations. In view of Theorem 2.6, the wave set
Sj(u0) is a two-dimensional manifold when j ∈ P. It is our objective now to se-
lect a nonclassical wave curve Wnc

j (u0) in the wave set. Heuristically, it is sufficient
to determine one free parameter needed for each nongenuinely nonlinear wave fam-
ily. One may postulate that for each state u0, there exists a single right state u1

that can be reached by a nonclassical shock for any j ∈ P. This is indeed what
happens when defining nonclassical shocks as limits of diffusive-dispersive regulariza-
tions. We propose to select the admissible nonclassical shocks by considering their
entropy dissipation and stipulate the knowledge of an additional jump-like relation
on the nonclassical discontinuities. The derivation of such an additional relation for
limits of diffusive-dispersive regularizations is discussed later in this subsection.

The following definition stipulates that the entropy dissipation

D(u0, u1) = −s (U(u1) − U(u0)) + F (u1) − F (u0)

of a nonclassical shock, with speed s = λ̄j(u0, u1) and connecting u0 to u1, is a
given “constitutive function” representing certain small-scale properties that have
been neglected at the hyperbolic level of modeling. In the following we suppose, for
the sake of definiteness, that the condition (2.10a) is satisfied. Dealing with the case
(2.10b) requires some modification of the analysis in this subsection. (See also section
3 in which both cases arise.)

We denote by BV ∩L∞ the space of measurable and bounded functions that have
bounded variation in space and time. This space is natural for systems of conservation
laws. Functions in BV ∩ L∞ admit traces in a measure theoretic sense [14], so that
(2.42) below has a meaning almost everywhere with respect to the one-dimensional
Hausdorff measure.

Definition 2.8. For each j ∈ P, let φj : U → R− be a given function. A solution
u(x, t) ∈ BV ∩  L∞ to (2.1), (2.8) is called an admissible nonclassical entropy solution
if it satisfies the entropy inequality and the entropy dissipation of any nonclassical
j-shock in u (j ∈ P), connecting u0 to u1, satisfies

D(u0, u1) = φj(u0).(2.42)

We refer to (2.42) as a kinetic relation and to φj as the kinetic function for the
family j since they determine the propagation of the nonclassical shocks. The kinetic
function could also be expressed as a function of the right state u1 (which need not
be equivalent to (2.42)) or—and this is physically more realistic—as a function of a
variable “symmetric” in u0 and u1, such as the shock speed, or—for problems in fluid
dynamics and material science—the mass flux across the discontinuity, etc. Here we
shall focus attention on kinetic functions depending solely on the shock speed s, i.e.,

D(u0, u1) = ϕ(s),(2.43)

where ϕ need be defined only on the union of intervals Λ =
⋃

j∈P

[

λmin
j , λmax

j

]

. For
scalar conservation laws and under suitable monotonicity conditions, the kinetic func-
tion can always be expressed as a function of the shock speed. The same is true for
the kinetics generated by diffusive-dispersive regularizations for the systems of two
equations studied later in sections 3–5.

In many physical systems, the entropy dissipation is related to the mechanical
energy and may be viewed as a force driving the propagation of the nonclassical shocks;
it is natural to provide a one-to-one relationship between the propagation speed and
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the driving force. This standpoint was emphasized by Abeyaratne and Knowles [1]
for propagating phase boundaries in solids undergoing phase transformations.

In the following we show that the kinetic relation selects a unique curve Wnc
j (u0)

corresponding to nonclassical solutions in the wave set Sj(u0). Denote by D?
j (u0) the

maximal negative value of the entropy dissipation D(u0, u1) along the Hugoniot curve
Hj(u0):

D?
j (u0) = min

u1∈Hj(u0)
D(u0, u1).

Actually the maximum is achieved at the critical value µ?
j (u0) for the shock speed.

Consider also the entropy dissipation as a function of s, say, d?(s) defined as

d?(s) = max
{

D?
j (u0) |u0 ∈ U , j ∈ P, λj

(

u0, wj(µ
?
j (u0);u0)

)

= s
}

.(2.44)

(The value is taken to be −∞ when no u0 satisfies the constraint.) Note that D?
j

and d? are computable from the expression of the flux f in the examples studied in
sections 3–5 below.

Theorem 2.9 below shows that knowing the entropy dissipation of the admissible
nonclassical shocks determines a unique solution of the Riemann problem. To solve
the Riemann problem, we assume that

{

rk(u, u
′)
}

is a basis of R
N for arbitrary u, u′

∈ U . (This is always true when R is small enough.)
Theorem 2.9. Suppose that the system satisfies the condition (2.10a).
(1) For j ∈ P, let φj : U → R− be a continuous function satisfying

D?
j (u0) ≤ φj(u0) ≤ 0 for all u0 ∈ U , j ∈ P.(2.45)

Let u0 ∈ U and j ∈ P be given. From the wave set Sj(u0), there exists a unique
wave curve Wnc

j (u0) using nonclassical shocks satisfying the kinetic relation (2.42).
For ul and ur in U , the Riemann problem (2.1), (2.11) admits a unique solution in
the class of admissible nonclassical entropy solutions obtained by intersection of the
curves Wnc

j . Furthermore, the solution depends continuously in the L1 norm upon its
end states.

(2) Let ϕ : Λ → R− be a Lipschitz continuous function satisfying

d?(s) ≤ ϕ(s) ≤ 0,
dϕ

ds
(s) ≤ 0 for all s ∈ Λ.(2.46)

For the kinetic relation (2.43), the conclusions are the same as in Case 1.

(3) In both Cases 1 and 2 above, there exist two values µ[
j(u0) and µ]

j(u0), with

µ??
j (u0) ≤ µ[[

j (u0) ≤ µ[
j(u0) ≤ µ?

j (u0) ≤ µ]
j(u0) ≤ µ]]

j (u0) ≤ µj(u0),(2.47)

such that the nonclassical wave curve is composed of the following four pieces:

Wnc
j (u0) =



















Oj(u0) for all µj ≥ µj(u0),

Hj(u0) for all µ]
j(u0) ≤ µj ≤ µj(u0),

Hj(u
[) for all µ[

j(u0) ≤ µj < µ]
j(u0),

Oj(u
[) for all µj ≤ µ[

j(u0),

where u[ := wj

(

µ[
j(u0);u0

)

. The curve Wnc
j (u0) is continuous and monotone in the

parameter µj, and is of class C2 except at µj = µ]
j(u0), where it is generally only

Lipschitz continuous.
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We can recover the classical curve Wc
j (u0) with the (maximal) choice

φj(u0) = D?
j (u0).(2.48)

In that case the classical and nonclassical shocks in the solution have the same prop-
agation speed, and the two waves are indistinguishable in the (x, t) plane. On the
other hand it is not possible to use part of the classical wave curve, say, for values
µj > µc

j , and switch to the nonclassical wave curve, say, for values µj < µc
j , at least as

far as a Riemann solution depending continuously upon its end states is sought. The
latter seems to be a natural requirement, at least in view of the examples studied so
far in the literature. Furthermore the classical wave curve Wc

j (u0) is always admis-
sible, since Definition 2.8 does not prevent us from solving the Riemann problem by
using classical waves only. Therefore, even after imposing the kinetic relation, there
exist two wave curves to choose from for each nongenuinely nonlinear family, Wc

j (u0)
and Wnc

j (u0). It would be interesting to connect this nonuniqueness with instability
in solutions to an augmented diffusive-dispersive system with vanishing small-scale
parameters.

Proof of Theorem 2.9. Let u0 ∈ U and j ∈ P be given. In view of the definition
(2.44) of the maximal entropy dissipation and the assumption (2.45), the criterion
(2.42) selects a unique nonclassical shock along the Hugoniot curve Hj(u0), say, u[ =
wj(µ

[
j(u0), u0). Once this state is selected, the construction in Theorem 2.6 determines

a unique wave curve Wnc
j (u0) having the form described in item (3) of the theorem.

This curve is continuous in the parameter µj which by construction is monotone
increasing along it. It is of class C2 at the point µj(u0) and µ[

j(u0) since classical
rarefaction curves and shock curves have second-order contact. Finally, along the
wave curve, the speeds of the (rarefaction or shock) waves change continuously. To

see that, at the point µ]
j(u0), one has to compare, on one hand, the shock speed of

the nonclassical shock and, on the other hand, the shock speeds of the nonclassical
shock and the classical one. Actually all three terms coincide at µ]

j(u0):

lim
µj→µ

]

j
(u0)

µj>µ
]

j
(u0)

λ̄j(u0, wj(µj , u0)) = lim
µj→µ

]

j
(u0)

µj<µ
]

j
(u0)

λ̄j
(

u[, wj(µj ;u
[)
)

= λ̄j
(

u0, u
[
)

.

The continuous dependence of the wave speeds implies the L1 continuous dependence
of the solution. Finally, having constructed the Lipschitz continuous wave curves Wnc

j

for j ∈ P and the smooth wave curves Wc
j for j /∈ P, and using the condition that

{

rk(u, u
′)
}

is a basis of R
N for arbitrary u, u′, we can solve the Riemann problem

with data in U : combining together the wave curves, we apply the theorem of im-
plicit functions for Lipschitz continuous curves. (For a reference see Isaacson and
Temple [29].) The Riemann problem admits a unique solution, at least with data in
B(u∗, R

′) ⊂ U , with R′ << R. This proves the items (1) and (3).
In order to use the criterion (2.43), one observes that the entropy dissipation

D(u0, u1) along the Hugoniot curve—when expressed as a function of the shock speed
s—is increasing from its lower valueD?

j (u0) at s? = λ̄j
(

u0, wj(µ
?
j (u0);u0)

)

to the value

0 at s = λ̄j
(

u0, wj(µ
[[
j (u0);u0)

)

. On the other hand, the function ϕ(s) is assumed to be
decreasing in the same interval and by (2.44), (2.46), one has ϕ(s?) ≥ d?(s) ≥ D?

j (u0).

Thus there exists a unique point µj = µ[
j(u0) such that the kinetic relation (2.43) is

satisfied. This wave curve shares the same properties as that in the case (2.42).
Remark 2.10. (1) The assumption that the kinetic function be a decreasing

function of the shock speed may be motivated in the following way. Consider a scalar
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conservation law (N = 1) with the flux f(u) = u3 and the entropy U(u) = u2/2.
Consider a linear relation for nonclassical shocks, say, between the left state u0 and
the right state u1,

u1 = g(u0) := β u0.(2.49)

According to the theory in this section, one must have β ∈ (−1,−1/2). Plugging
(2.49) into the definition of the entropy dissipation D(u0, u1) the kinetic relation
corresponding to (2.49) can be computed:

ϕ(s) := D
(

u0, g(u0)
)

= − (1 + β)(1 − β)3 u4

= − (1 + β)(1 − β)3(1 + β + β2)−2 s2,

which indeed is a decreasing function of s in the interesting range s > 0.
(2) In the classical solution, the value of the intermediate state (if any) in the

Riemann solution varies continuously as u1 ∈ Wc
j (u0) describes the wave curve; the

solution in the (x, t) plane varies continuously in the L1 norm and its total variation
is a continuous function of the end points. For the nonclassical wave curve, the wave
speeds only are continuous, and the total variation of the Riemann solution is not a
continuous function of the endpoints.

To conclude this section, we explain how to determine the kinetic function, needed
in (2.42) or (2.43). Consider a sequence of solutions uε to a regularized version of
(2.1) of the form (2.2). Assume for the sake of this presentation that the uε remain
bounded in the total variation norm and converge to a limiting solution u to (2.1),
(2.5). Suppose also that the system admits an entropy pair that is compatible with
the regularization (2.2). We know that the entropy inequality (2.5) is too lax to
guarantee uniqueness for the Riemann problem. Another Rankine–Hugoniot relation,
in addition to the set of conservation laws contained in (2.1), is in principle sufficient
to select a unique nonclassical solution.

The concepts of entropy and entropy dissipation are fundamental in the theory
of hyperbolic conservation laws. It seems mathematically natural to go beyond the
entropy inequality (2.8) and instead write the entropy balance:

∂tU(u) + ∂xF (u) = µU ≤ 0.(2.50)

Here µU is a bounded, nonpositive Borel measure, which provides partial information
on the small-scale effects in the regularization sequence that generated the solution u.
The dissipation measure generated by a regularization (2.2) satisfying the condition
(2.3) is

µU := w − ? lim
ε→0

ε ∂xu
T
ε ∇2U(uε)B1(uε)∂xuε.(2.51)

Since u solves (2.1), the measure µU has its support included in the union of the set
of points of approximate discontinuity of u.

The mass of the measure along the curve of discontinuity is the entropy dissipation
D(., .).

Of course the knowledge of the measure µU in (2.50) is required only for nonclas-
sical shocks, since the propagation of a classical shock is uniquely determined by the
Rankine–Hugoniot relation

−λ̄j(u0, u1)
(

u1 − u0

)

+ f(u1) − f(u0) = 0
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and the entropy inequality

−λ̄j(u0, u1) (U(u1) − U(u0)) + F (u1) − F (u0) ≤ 0.

The entropy dissipation measure µU for a nonclassical shock, as determined by (2.51),
in general, will depend upon the left state u0 and the shock speed, s = λ̄j(u0, u1). The
kinetic relation generated by (2.2) can be determined, at least at a formal level, from
an analysis of admissible traveling wave solutions to (2.2). Different approximations
to (2.1) will result, in general, in different kinetic relations. Consider a traveling wave
solution uε(x, t) = w((x−s t)/ε) to (2.2), that is a solution to the ordinary differential
equation in ξ = (x− s t)/ε

−sw′ + f(w)′ =
(

B1(w)w′
)′

+
(

B2(w)w′′
)′

(2.52)

satisfying the following boundary conditions

lim
ξ→−∞

w(ξ) = u0, lim
ξ→∞

w(ξ) = u1,

lim
ξ→±∞

w′(ξ) = 0, lim
ξ→±∞

w′′(ξ) = 0.
(2.53)

The equation (2.52) can be integrated once:

−s (w − u0) + f(w) − f(u0) = B1(w)w′ +B2(w)w′′.(2.54)

The internal structure of the nonclassical shock is represented by the trajectory ξ →
w(ξ), which can be used to determine the entropy dissipation measure. Namely, at
the hyperbolic level we have

D(u0, u1) = −λ̄j(u0, u1)
(

U(u1) − U(u0)
)

− F (u1) + F (u0)

=

∫

R

∇U(w) ·
(

−λ̄j(u0, u1) +Df(w)
)

w′ dξ

= −
∫

R

w′ · ∇2U(w) ·
(

−λ̄j(u0, u1) (w − u0) + f(w) − f(u0)
)

dξ.

Using (2.54) for the traveling wave and the conditions (2.3), we obtain

D(u0, u1) = −
∫

R

(w′)T∇2U(w)B1(w)w′ dξ ≤ 0.(2.55)

In the examples arising in continuum mechanics, at least, the entropy dissipation for a
nonclassical shock, computed from (2.55), can be expressed as a function of the state
u0 (or, equivalently, u1). (See also section 4.1.)

3. Nonclassical shocks in elastodynamics (1). We now turn to a model
arising in the theory of elastic materials, which is strictly hyperbolic and admits two
nongenuinely nonlinear characteristic fields. This section restricts attention to the
Riemann problem and extends the analysis of section 2 to arbitrarily large initial
data.

3.1. Preliminaries. Consider the system of elastodynamics

∂tv − ∂xσ(w) = 0,

∂tw − ∂xv = 0,
(3.1)
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where the real-valued functions v and w represent the velocity and gradient deforma-
tion, respectively. The stress-strain law is assumed to have the form

σ(w) = w3 +m2 w, m > 0.(3.2)

The focus here is on Riemann data

v(x, 0), w(x, 0) =

{

vl, wl, x < 0,

vr, wr, x > 0,
(3.3)

for constants vl, wl, . . . . We note that (3.1)–(3.2) is invariant under any of the trans-
formations:

w → −w, v → −v,(3.4i)

v → v + v̄ (for any constant v̄),(3.4ii)

x→ −x, v → −v.(3.4iii)

We may write (3.1) in the general form (2.1) by setting u = (v, w), f(u) =
−
(

σ(w), v
)

. The system is strictly hyperbolic with eigenvalues λ1(v, w) = −c(w) <

0 < λ2(v, w) = c(w), where the sound speed is defined by c(w) =
√

3w2 +m2. Since
the wave speeds are independent of v, the notation λ1(w) = −c(w) and λ2(w) = c(w)
is also used. The wave speeds are strictly separated: they keep different signs and
are bounded away from zero. The right eigenvectors may be chosen as ri(v, w) =
(±c(w), 1) for i = 1, 2.

We consider the wave curves for the system (3.1). The Hugoniot locus H1(v0, w0)
consists of all the states (v1, w1) connected to (v0, w0) on the left by a discontinuity
with speed s < 0. Similarly, H2(v0, w0) corresponds to the discontinuities with speed
s > 0. The Rankine–Hugoniot condition gives

−s =
v − v0
w − w0

=
σ(w) − σ(w0)

v − v0
.(3.5)

A discontinuity connecting (v0, w0) to (v, w) therefore travels with speed s = ± c̄(w0;w),
where we use the notation c̄(w0;w) =

√

w2
0 + w0 w + w2 +m2. Observe that c̄(w;w) =

c(w). We emphasize that c̄(w0;w) is the magnitude of the shock speed and is always
positive. From (3.5) we obtain

H1(v0, w0) =

{

v ∈ R | v − v0 = c̄(w0;w) (w − w0)

}

,(3.6)

H2(v0, w0) =

{

v ∈ R | v − v0 = − c̄(w0;w) (w − w0)

}

.(3.7)

In addition, the rarefaction waves are based on the integral curves of the vector fields
rj :

O1(v0, w0) =

{

v ∈ R | v − v0 =

∫ w

w0

c(z) dz

}

,(3.8)
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O2(v0, w0) =

{

v ∈ R | v − v0 = −
∫ w

w0

c(z) dz

}

.(3.9)

The system (3.1)–(3.2) is not genuinely nonlinear since ∇λ1(w)·r1(w) = − 3w/c(w)
and ∇λ2(w) · r2(w) = 3w/c(w), which vanish on the (one-dimensional) manifold
M = M1 = M2 =

{

(v, w) |w = 0
}

. In order to uniquely solve the Riemann prob-
lem, we now apply appropriate entropy criteria. Away from the line w = 0, the system
has two genuinely nonlinear fields; therefore, for shocks with small amplitude, the Lax
shock inequalities may be used.

3.2. Liu’s construction of a unique solution. Here we briefly summarize
the Liu’s construction for the system (3.1). For a point (v, w) in H1(v0, w0), the Liu
entropy criterion implies the Lax shock inequalities, −c(w0) ≥ −c̄(w0;w) ≥ −c(w),
and, as pointed out in section 2, is actually equivalent to them since the stress-strain
relation has a single inflexion point. Defining

κ = w/w0,(3.10)

and using the expressions for c(w) and c̄(w0;w), one sees that the admissible region
for H1(v0, w0) consists of all (v, w) with

κ ∈ (−∞,−2] ∪ [1,+∞) .(3.11)

For H2(v0, w0), the shock speed is positive and the Liu criterion leads to the interval

κ ∈ [−1/2, 1] .(3.12)

Note in passing that the intervals found in (3.11) and (3.12) are independent of m. We
now utilize (3.11)–(3.12) and construct the classical wave curves Wc

j (v0, w0). Consider
a point (v0, w0) with w0 > 0. By (3.4ii), Wc

j (v
′
0, w0) for v′0 6= v0 is a suitable translate

of Wc
j (v0, w0), while (3.4i) allows the construction for w0 > 0 to be simply extended

to the case w0 < 0.
The wave curves are easily defined locally. These curves are H1(v0, w0), O1(v0, w0),

H2(v0, w0), and O2(v0, w0) for values w > w0, w < w0, w < w0, and w > w0, re-
spectively. Note that since ∇λi · ri = ±3w/c(w) changes signs only along curves
crossing w = 0, we see immediately that the curves H1(v0, w0) and O2(v0, w0) may
be extended to all points (v, w) such that w > w0. These two curves correspond to
functions w → v(w) that are increasing and decreasing, respectively, according to the
formulas (3.6) and (3.9).

We now turn to those wave curves which cross the line w = 0. For 0 < w ≤ w0,
we have ∇λi · ri < 0, so that all points (v, w) in this region, lying on O1(v0, w0),
may be arrived at by a single 1-rarefaction. This construction changes for w <
0: when −2w0 < w < 0, there is a critical point on the rarefaction curve, say,
(v∗, w∗) ∈ O1(v0, w0) with w∗ > 0, for which c̄(w0; , w∗) = c(w∗). This point satisfies
w∗ = −w/2.

According to the Liu criterion, in order to reach a point (v, w) from (v0, w0),
having −2w0 < w < 0, the solution proceeds along O1(v0, w0) until it reaches (v∗, w∗),
at which point it jumps on H1(v∗, w∗) to (v, w). We denote this composite curve by

K1(v0, w0) =

{

(v, w) | there exists (v∗, w∗) ∈ O1(v0, w0), 0 < w∗ < w0,

such that w = −2w∗ and (v, w) ∈ H1(v∗, w∗)

}

.

(3.13)
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It may be shown that along K1(v0, w0), v is monotone increasing with w. When
w ≤ −2w0, the curve K1(v0, w0) may be continued, by virtue of (3.11), as a single
1-shock, i.e., (v, w) ∈ H1(v0, w0), when w ≤ −2w0 and v is thus given by the Rankine–
Hugoniot relation (3.5). Note that K1(v0, w0) joins H1(v0, w0) at the point (v∗∗, w∗) =
(v∗∗,−2w0) ∈ H1(v0, w0), and K1(v0, w0) joins O1(v0, w0) at the point (0, v0) ∈
O1(v0, w0). We summarize in the next lemma.

Lemma 3.1. The classical 1-wave curve from a point (v0, w0), w0 > 0, is the
union of four pieces:

Wc
1(v0, w0) =



















H1(v0, w0) for w > w0,

O1(v0, w0) for 0 ≤ w ≤ w0,

K1(v0, w0) for − 2w0 ≤ w < 0,

H1(v0, w0) for w < −2w0.

It is a monotone increasing curve of class C∞, extending from (v, w) = (−∞,−∞) to
(v, w) = (+∞,+∞).

The construction of the 2-wave curve is similar and we summarize its properties
as follows.

Lemma 3.2. The classical 2-wave curve from (v0, w0), with w0 > 0, is the union
of three pieces:

Wc
2(v0, w0) =











O2(v0, w0) for w > w0,

H2(v0, w0) for − w0/2 ≤ w ≤ w0,

O2(v∗, w∗) for w < −w0/2,

where (v∗, w∗) ∈ H2(v0, w0) and w∗ = −w0/2. It is a monotone decreasing curve of
class C∞, extending from (v, w) = (+∞,−∞) to (v, w) = (−∞,+∞).

The infinite extent in v of the 2-wave curve follows from the fact that the integral
curves in (3.9) have no horizontal asymptotes. This completes the construction of
the wave curves based on the Liu criterion. A unique solution exists for arbitrary
Riemann data. It can be checked that this solution depends continuously upon its
initial states.

3.3. Two-parameter family of nonclassical entropy solutions. We apply
Definition 2.1 to the system (3.1) and construct a two-parameter family of solutions.
Definition 2.1 is based on a specific convex entropy pair, which we take here to be

U(v, w) =
v2

2
+
w4

4
+m2 w

2

2
, F (v, w) = −v σ(w).(3.14)

This choice is based on the physically motivated regularization studied in section 4.
A brief computation leads to the following formula for the entropy dissipation:

D(v−, w−; v+, w+) = −s
(

w̄(m2 + w̄2) [w] + v̄ [v]
)(

m2w̄ + w̄3
)

[v] − v̄ [σ(w)](3.15)

with [α] = α+−α− and ᾱ = (α+ +α−)/2. We now substitute the Rankine–Hugoniot
relations (3.5) to get

D(v−, w−; v+, w+) = w̄ w̄2 [v] − w̄3 [v] = −1

2
w̄ [w]

2
[v] .

The entropy inequality (2.8), (3.14) therefore reduces to

w̄ [v] ≥ 0(3.16)
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(for [w] 6= 0). If we now utilize (3.6)–(3.7) for H1(v−, w−) and H2(v−, w−), we find
that

D(v−, w−; v+, w+) =
s

2
[w]

3
w̄.(3.17)

We recall that s < 0 for H1(v−, w−) and s > 0 for H2(v−, w−). From now on we
express the entropy dissipation as a function of w− and w+ alone: D(w−;w+). The
admissible nonclassical shocks from (v−, w−) to (v+, w+) must therefore satisfy

|w+| ≥ |w−| along H1(v−, w−), |w+| ≤ |w−| along H2(v−, w−).
(3.18)

Since H1(v−, w−), restricted by the condition (3.8), forms a nonconnected set, we
denote the portion of H1(v−, w−) with w+ ≥ w− by H+

1 (v−, w−), while that portion
having w+ ≤ −w− will be denoted by H−

1 (v−, w−).
We now introduce solutions containing nonclassical shocks. Consider a point

(v0, w0) with w0 > 0. Owing to transformations (3.4), a translation in v0 simply
effects the same translation in the entire solution; furthermore, we can obtain the wave
curves for w0 < 0 by switching the signs of both w and v. We begin by discussing
the 1-wave curves. As in the classical case, the solution may leave (v0, w0) along
O1(v0, w0) and proceed until it reaches the point (ṽ, w̃) with w̃ = 0.

Lemma 3.3. From any point (v1, w1) ∈ O1(v0, w0), with 0 < w1 < w0, it is
possible to jump to a point (v2, w2) ∈ H−

1 (v1, w1) with w2 ∈ [−2w1,−w1].
Proof of Lemma 3.3. By (3.18), one has w2

2−w2
1 ≥ 0. In addition, for the shock to

follow the rarefaction, one needs 0 > −c̄(w1;w2) ≥ λ1(w1), so that (w2 + 2w1)(w2 −
w1) ≤ 0. The intersection of these two regions is the interval −2w1 ≤ w2 ≤ −w1. Of
the points w2 in this interval, only the right-hand boundary w2 = −2w1 corresponds
to a classical shock.

As (v1, w1) varies from (v0, w0) to (ṽ, 0), along O1(v0, w0), the set of image points,
{(v2, w2)}, of these nonclassical shocks covers a bounded region. We refer to these
wave fans as O1-H−

1 nonclassical solutions. From (3.18), it is also possible to leave
(v0, w0) by a shock, i.e., to jump to (v1, w1) ∈ H1(v0, w0) for |w1| ≥ |w0|. We note
that for w1 ≥ w0 and for w1 ≤ −2w0, these are classical shocks. In addition we have
the following.

Lemma 3.4. From a point (v1, w1) ∈ H+
1 (v0, w0), it is possible to jump via a

nonclassical shock to (v2, w2) ∈ H−
1 (v1, w1) with −w0 − w1 ≤ w2 ≤ −w1. The points

with w2 = −w0 −w1 lie on H1(v0, w0). The region containing a classical shock along
H+

1 (v0, w0), followed by a nonclassical shock along H−
1 (v1, w1), extends indefinitely to

the left in w2, and down in v2.
Proof of Lemma 3.4. Once again (3.18) gives |w2| ≥ |w1|, and for the nonclassical

shock to follow the classical one, one must also have −c̄(w1;w2) ≥ −c̄(w0;w1). Ma-
nipulating the expression for s leads to |2w2 + w1| ≤ |2w0 + w1|, and, using the fact
that 0 < w0 < w1, this has the solution −w0 − w1 ≤ w2 ≤ w0. Combining this with
the entropy inequality leads to −w0 − w1 ≤ w2 ≤ −w1.

For w2 = −w1−w0, one has −c̄(w0;w1) = −c̄(w0;w2) and, by using the Rankine–
Hugoniot condition (3.5), one can show that (v2, w2) ∈ H−

1 (v0, w0). Since w2 ≤ −2w0,
the point (v2, w2) is in the classical portion of this Hugoniot curve.

According to (3.18), a point (v1, w1) ∈ H+
1 (v0, w0) may have w1 arbitrarily large

and positive, so that w2 ≤ −w1 can be arbitrarily large and negative. A calculation
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using the Hugoniot curve shows that

v2 = v0 + c̄(w0;w1) (w1 − w0) + c̄(w1;w2) (w2 − w1)

≤ v0 + c̄(w0;w1) (w1 − w0) − 2w1 c(w1),

so that as w1 → +∞ with (v0, w0) fixed, we have v2 ≤ −w2
1 (1 + o(1)) → −∞, so the

upper boundary, and hence the entire region, tends to negative infinity, as w2 → −∞.
There is no horizontal asymptote.

We refer to these 2-wave fans as H+
1 -H−

1 nonclassical solutions. A similar argu-
ment shows that no O1-H−

1 or H+
1 -H−

1 wave fan may be connected to additional states
by a 1-wave.

We now turn to the 2-wave family, again taking (v0, w0) with w0 > 0. In this case,
λ2(w) =

√
3w2 +m2 is increasing with w, so that any point (v1, w1) ∈ O+

2 (v0, w0),
i.e., with w1 ≥ w0, may be connected to (v0, w0) via a 2-rarefaction. We may not
continue from (v1, w1) to a point (v2, w2) ∈ H2(v1, w1), since the entropy inequality,
which gives |w2| ≤ |w1|, and the proper ordering of wave speeds, which implies w2 ≥
w1, have only the degenerate point (v2, w2) = (v1, w1) of intersection. If instead we
leave (v0, w0) via H2(v0, w0), the entropy inequality permits us to proceed to the left,
until we reach (ṽ, w̃) ∈ H2(v0, w0) with w̃ = −w0. Note that this shock is nonclassical
for −w0 ≤ w1 < −w0/2.

Lemma 3.5. For (v1, w1) ∈ H2(v0, w0) with −w0 ≤ w1 ≤ −w0/2, it is possible
to connect to a point (v2, w2) ∈ H2(v1, w1) with w1 ≤ w2 ≤ −w0 − w1. This part
of the curve H2(v1, w1) extends until it reaches a point (v2, w2) = (v2,−w0 − w1) ∈
H2(v0, w0).

Proof of Lemma 3.5. Starting from a point (v1, w1) ∈ H2(v0, w0), we proceed
with a 2-shock on the right, to a point (v2, w2) ∈ H2(v1, w1). The entropy inequality
forces |w2| ≤ |w1|. In addition, the requirement that c(w1;w2) ≥ c(w0;w1) ≥ 0
implies that |2w2 + w1| ≥ |2w0 + w1|. Since w0 ≥ |w2|, we must take w1 ≤ 0. The
condition then becomes |2w2 − |w1|| ≥ 2w0 − |w1|, so that w2 must also be non-
positive. Some manipulation gives w2 ≤ −w0 − w1 ≤ 0, so that in combination with
(3.18) we have w2 ∈ [w1,−w0 − w1], and w1 has the restriction that w1 ≤ −w0 −w1,
so that w1 ≤ −w0/2. This leads to w1 ∈ [−w0,−w0/2]. At the right-hand end of this
interval, w1 = −w0/2, the shock is classical.

As w1 varies about the interval [−w0,−w0/2], the set {(v2, w2)} of image points
attainable from (v0, w0) by a nonclassical shock, followed by a second shock, fill up
a bounded region. This second shock is always a classical one, across which w does
not change signs. Points on this second shock may not, therefore, be connected to a
further rarefaction or shock wave. We now consider rarefaction waves originating at
a point on H2(v0, w0).

Lemma 3.6. A point (v1, w1) ∈ H2(v0, w0), with −w0 ≤ w1 ≤ −w0/2, may be
connected to any point (v, w) ∈ O2(v1, w1) having w ≤ w1.

Proof of Lemma 3.6. Since λ2(w) is increasing for |w| increasing, if points (v1, w1)
can be found so that c(w1) ≥ c(w0;w1) ≥ 0, then the rarefaction curves O2(v1, w1)
may be continued indefinitely to the left. The condition on wave speeds reduces to
(2w1 +w0)(w1 −w0) ≥ 0, so that we must have w1 ≤ −w0/2. Thus any (v1, w1) with
w1 ∈ [−w0,−w0/2] can serve as the origin of a 2-rarefaction. Note that the classical
shock-rarefaction occurs for w1 = −w0/2.

From (3.8)–(3.9), all of the (classical and nonclassical) integral curves have v →
+∞ as w → −∞. As w1 varies from −w0/2 to −w0, the set of points that may
be reached by a nonclassical 2-shock, followed by a rarefaction, forms an unbounded
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Figure 3.1a
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Fig. 3.1. Wave curve for (a) the 1-wave family, (b) the 2-wave family.

strip in the (v, w)-plane. These rarefaction curves may not be further joined to 2-
shock curves, since the entropy inequality and the proper wave speed ordering (the
shock must travel faster than the maximum wave speed of the rarefaction fan) lead
to incompatible intervals in w. We summarize the above results in this subsection by
stating the following.

Theorem 3.7. The solutions to (3.1)–(3.3) satisfying a single entropy inequality
form a one-parameter family in each of the two characteristic fields. The shock speeds
s1 and s2 of the nonclassical shocks in the 1- and 2-wave families, respectively, may
be used as the parameters. Given a left-hand state (v0, w0) and denoting the left-hand
state of the nonclassical shock by (v−, w−), there are nonclassical solutions in the
1-family for s1 satisfying

max

{

−
√

w2
0 + w0 w− + w2

− +m2 , −
√

3w2
− +m2

}

≤ s1 ≤ −
√

w2
− +m2,

and in the 2-family for s2 satisfying

√

(3/4)w2
− +m2 ≤ s2 ≤

√

w2
− +m2.

3.4. Unique admissible nonclassical entropy solution. In this section, we
construct the nonclassical wave curves Wnc

j (v0, w0), j = 1, 2 , displayed in Figure 3.1.
For a solution connecting u0 = (v0, w0) to u1 = (v1, w1), we label the successive states,
according to increasing wave speed, by u0, ui1 = (vi1 , wi1), um = (vm, wm), ui2 =
(vi2 , wi2), and u1. For classical shocks or rarefactions in the 1-wave and 2-waves
curves, the points ui1 and ui2 , respectively, degenerate into u0 and u1, respectively.
Nonclassical 1-shocks always connect ui1 to a range of um, while nonclassical 2-shocks
join um to a range of ui2 . In the classical cases where shocks are attached to rarefac-
tions, one always has wm = −2wi1 and/or wi2 = −wm/2.

Depending on u0 and u1, a nonclassical shock may appear in either H1, or H2,
or both. To select the unique nonclassical shock from among the one-parameter
families of solutions found in the previous subsection, we will utilize a kinetic relation,
stipulating that any nonclassical 2-shocks from um to ui2 must satisfy

D(wm;wi2) = ϕ(s),(3.19)
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where ϕ is the kinetic function depending upon the shock speed s. For a given left-
hand state (vm, wm), we show that the kinetic relation produces a unique right-hand
state (vi2 , wi2), where wi2 depends only on wm, and not on vm, say, wi2 = g(wm).
From Lemmas 3.3 and 3.4, wi2 ∈ [−wm,−wm/2).

In order to select a unique nonclassical shock in the 1-wave family, a symmetry
of system (3.1) is utilized: the nonclassical 1-shock from ui1 to um is selected from
among the possible nonclassical 1-shocks from ui1 , if the kinetic relation (3.19) is
satisfied for wi2 = wi1 . We begin with the kinetic relation for H2-shocks, divorced
from their role in the solution of the Riemann problem, and consider nonclassical
H2-shocks from (v−, w−) to (v+, w+).

Theorem 3.8. Denote by I = [m,∞) the range of positive shock speeds, s, and
consider a kinetic function ϕ(s) having the following properties:

dϕ

ds
< 0 for s ∈ I,(3.20)

ϕ(s) ≤ 0 for all s ∈ I,(3.21)

ϕ(s) ≥ −3

4
s (s2 −m2)2 for s ∈ I.(3.22)

Then the kinetic relation (3.19) selects a unique value of the right-hand state w+ =
g(w−), from among the nonclassical shocks in H2(v−, w−).

Proof of Theorem 3.8. Without loss of generality, we take w− > 0. From (3.17),
we have

D(w−;w+) = c̄(w−;w+)(w+ − w−)3(w+ + w−)/4,(3.23)

and, from the previous subsection, −w− ≤ w+ < −w−/2 for the H2 nonclassical
shock. The following calculation shows that the entropy dissipation of (3.23) is mono-
tone in w+:

∂D(w−;w+)

∂w+
= (2w+ + w−) (5w2

+ + 4w+w− + 3w2
− + 4m2)

(w+ + w−)2

2 c̄(w−;w+)
.(3.24)

We rewrite the second factor in (3.24) as 3w2
+ + w2

− + 2 (w+ + w−)2 + 4m2 > 0. So
only the first factor may change sign, and therefore

∂D/∂w+ < 0 along H2(v−, w−) for w+ < −w−/2,(3.25)

so that D is monotone decreasing in w+ for nonclassical 2-shocks.
For fixed w− > 0 and w+ < −w−/2,

∂c(w−;w+)

∂w+
=

2w+ + w−

2 c̄(w−;w+)
< 0,(3.26)

so that combined with (3.25), this shows that in the region of admissible nonclassical
2-shocks, D is increasing with s. Therefore by (3.20), the functions D(w−;w+) and
ϕ(s) can have at most one intersection point.

We now verify that conditions (3.21) and (3.22) ensure one such intersection.
Initially, by (3.18), we have D(w−;w+) ≤ 0. Condition (3.21) is therefore a natural
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upper bound on ϕ. In addition, the maximum negative entropy dissipation for a given
w− occurs at the “classical” endpoint, w+ = −w−/2, of the admissible nonclassical

interval. At this point, s =
√

3w2
−/4 +m2 and by (3.24),

D(w−;−w−/2) = s (−3w−/2)3 (w−/2)/4

= −3

4
s (s2 −m2)2 .

(3.27)

Thus, if ϕ(s) remains within the bounds (3.21) and (3.22), the kinetic relation (3.19)
must have a unique solution. This completes the proof of Theorem 3.8.

Remark. The construction of Theorem 3.8 cannot be extended to cover the non-
classical 1-shocks, i.e., to the interval s ∈ (−∞,−m], as the following argument
demonstrates. For the admissible, nonclassical 1-shock region, −2w− < w+ ≤ −w−,
one finds again that the entropy dissipation D is monotonically increasing with s.
This compels us to take ϕ′(s) < 0 in (−∞,−m]. On the other hand, we also require
ϕ(s) ≤ 0, and ϕ(s) ≥ 3s(s2 −m2)/4, with this latter function increasing to zero at
the right-hand endpoint of the interval. No kinetic function φ can possibly satisfy
this combination of constraints over the whole interval of s.

We therefore abandon the idea of having independently prescribed kinetics for
each of the families of waves. Instead, we will show existence and uniqueness for
the Riemann problem under an assumption of symmetric kinetics. With symmetric
kinetics, a nonclassical H1-shock from wi1 to wm is selected if the kinetic relation for
H2 selects a shock from wm to wi2 = wi1 . For the case of nonclassical shocks in both
families, this assumption results in the two nonclassical shocks being mirror images
of each other across the w-axis in the (x,w)-plane. We will see in section 4 that a
numerical scheme for (3.1) produces such symmetric nonclassical shocks.

We motivate a symmetric choice of wi1 by noting that system (3.1) is invariant
under the transformation x → −x, v → −v. Thus to any nonclassical 2-shock
from (vm, wm) to (vi2 , wi2), there corresponds a nonclassical 1-shock from (vi1 , wi1)
to (vm, wm) with wi1 = wi2 . These shocks are actually antisymmetric in v and have
vi1 = 3vi2 − 2vm. Whether or not such nonclassical shocks are admissible depends on
the relative values of w0 and wi1 , as the following lemma shows.

Lemma 3.9. Consider a point u0, where w0 > 0 without loss of generality.
For 0 < wi1 < w0, the nonclassical 1-shock from wi1 to wm where wm = h(wi1)
is determined by the kinetic relation (3.19) is always an admissible nonclassical 1-
shock. For wi1 > w0, the nonclassical shock from wi1 to wm, where wi1 = wi2

and wi2 = g(wm), is determined from the H2 kinetics, is only admissible if wm ∈
(−wi2 − wl,−wi2 ].

Remark. The function h(wi1) for the symmetric kinetics in the 1-wave family is
the inverse of g(·), which yields the right-hand state for nonclassical 2-shocks. Since,
as we will show in Theorem 3.10, the function g(·) is monotone in its argument, such
an inverse exists and is well defined.

Proof of Lemma 3.9. For wi1 > 0, we have wm < 0 and wi2 > 0. By Lemma
3.3, wi2 ∈ I2 := (−wm/2,−wm]. For wi1 < w0, which corresponds to the rarefac-
tion/nonclassical 1-shock wave-fan, wm ∈ I1 = (−2wi1 ,−wi1 ] = (−2wi2 ,−wi2 ], and
therefore wi2 ∈ I2 iff wm ∈ I1.

In the case wi1 > w0, Lemma 3.4 stipulates that there can be a nonclassical
shock joining ui1 to um, if wm ∈ I3 = (−wi1 − w0,−wi1 ], and by the symmetric
kinetics assumption, I3 = (−wi2 −w0,−wi2 ]. Meanwhile, for the nonclassical 2-shock,
wm ∈ (−2wi2 ,−wi2 ] which contains the interval I3, since w0 < wi2 .
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Remark. The intervals I3 and I4 are almost identical for w0 ≈ wi1 . When wi1 �
w0, however, the interval I3 becomes an ever-diminishing fraction of I4, relegated
to the upper end containing the “most” nonclassical shocks. As wi2 → ∞, unless
the kinetic relation selects wi2 = −wm, no admissible, symmetric 1-shock can be
constructed.

We prepare for the construction of the nonclassical wave curves, with a given
kinetics, by proving that the 2-shocks selected by (3.19) have w+ = g(w−) monotone
decreasing in w−.

Theorem 3.10. For a nonclassical 2-shock between (v−, w−) and (v+, w+), with
w+ = g(w−) selected by the kinetic relation (3.19),

d g(w−)

dw−

< 0 for s ∈ [m,∞) .(3.28)

Proof of Theorem 3.10. In light of the Rankine–Hugoniot condition, we may view
the selection of a unique right-hand state, w+, alternatively as the selection of a
unique (nonclassical) shock speed, s(w−). Thus we may reexpress the kinetic relation
(3.19) as

D(w−; s) = ϕ(s).(3.29)

Taking the derivative with respect to w− in (3.29) gives

∂D
∂w−

+
∂D
∂s

∂s

∂w−

= ϕ′(s)
∂s

∂w−

.(3.30)

Rearrangement of (3.30) leads to

∂s

∂w−

=
∂D/∂w−

ϕ′ − ∂D/∂s .(3.31)

Comparing the functions D and D, we find

∂D

∂w−

=
∂D
∂w−

and
∂D

∂w+

∂w+

∂s
=
∂D
∂s

.(3.32)

For the H2 nonclassical shocks, we have from Theorem 3.8 that ∂D/∂w+ < 0
and ∂w+/∂s < 0, so that by (3.32) we have ∂D/∂s > 0. In addition, since ϕ′ < 0 by
(3.20), the denominator in (3.31) is always negative. We now use the first equality of
(3.32) to compute the sign of the numerator in (3.31).

We regard s as a parameter and compute the derivative of (3.23) with respect to
w−, where we have

w2
+ = −w− w+ + S − w2

−(3.33)

from the Rankine–Hugoniot relation; here we have defined S = s2−m2. We note that
3w2

−/4 ≤ S ≤ w2
−. Taking the derivative of (3.33) gives w′

+ = −(w++2w−)/(2w++
w−). A straightforward calculation from (3.23) using these quantities results in

∂D

∂w−

=
−2 c̄(w−;w+)

2w+ + w−

[

S − 3w−

2
(w− + w+)

]

(S − 3w2
−) .(3.34)

The first factor is positive, since c̄(w−;w+) > 0 and 2w+ + w− < 0. The second
factor in (3.34) is greater than or equal to S− 3w2

−/4 and so is also positive. Finally,
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from the above bounds on S, the third factor in (3.33) is negative. Thus from (3.34)
we have ∂D/∂w− < 0 for Case A. This implies, from (3.31), that ∂s/∂w− > 0. The
result (3.28) then follows from the Rankine–Hugoniot condition. This completes the
proof of Theorem 3.10.

Corollary 3.11. The nonclassical 1-shock between (vi1 , wi1) and (vm, wm) with
wi1 = wi2 from symmetric kinetics, where wi2 = g(wm), has the monotonicity property

d h(wi1)

dwi1

< 0 for s ∈ (−∞,−m].(3.35)

We now turn to construction of the nonclassical wave curves, beginning with
Wnc

1 (v0, w0). The point u0 = (v0, w0) is arbitrary, but we take w0 > 0 here for defi-
niteness. Just as in the Liu construction, the wave-curve may be extended indefinitely
to the right, along the classical portion of the H1(v0, w0) curve. Similarly, Wnc

1 (v0, w0)
may be continued to the left until it reaches the point (v, w) = (ṽ, 0), with ṽ given by
(3.10), along the integral curve O1(v0, w0).

To extend this 1-wave curve into the region with w < 0, we utilize the symmetric
kinetics. For 0 ≤ wi1 < w0, it is possible by Lemma 3.3 and Corollary 3.11 to connect
(v0, w0) to a point (vm, h(wi1)), with −2w0 < h(wi1) ≤ 0, by an O1-H−

1 wave fan.
The union of these points, as wi1 varies between w0 and zero, is given by the curve

Γ1 =

{

(vm, wm) ∈ H−
1 (vi1 , wi1) | wm = h(wi1) ∈ (−2wi1 ,−wi1 ],

wi1 ∈ O1(v0, w0), 0 < wi1 < w0

}

.
(3.36)

By the monotonicity property of wm = h(wi1), the left-hand endpoint of Γ1,
which represents a single nonclassical shock, must be the point (v, w) = (v∗0 , h(w0))
∈ H−

1 (v0, w0), where the value of v∗0 is found from the Hugoniot curve (3.6).
According to Lemma 3.9, when wi1 > w0 there will be a nonclassical H+

1 -H−
1

wave fan, connecting (v0, w0) to (vm, h(wi1)) iff

ψh(wi1 ;w0) = h(wi1) + wi1 + w0 ≥ 0(3.37)

holds, where h(wi1) is the value of wm selected by the kinetic relation for wi1 . Note
that the monotonicity property, from Corollary 3.11, of h does not imply the satis-
faction or failure of condition (3.37) and, for a very general kinetic function ϕ(s) in
Theorem 3.8, there may be successive intervals in wi1 > w0 where nonclassical shocks
are alternately allowed or disallowed.

Since h(wi1) changes smoothly with wi1 , we must have ψh(wi1 ;w0) = 0 in (3.37)
just before it becomes negative, for a slightly larger wi1 . From Lemma 3.4, equality
in (3.37) implies that (vm, h(wi1)) lies on the classical shock curve H−

1 (v0, w0).
We therefore augment the symmetric kinetics for the 1-wave nonclassical shocks

by the additional requirement that if, for a given w0, we have ψh(wi1 ;w0) < 0, at
some wm = h(wi1), determined from symmetric kinetics, then the point (vm, wm) ∈
Wnc

1 (v0, w0) is chosen by requiring (vm, wm) ∈ H−
1 (v0, w0).

By Lemma 3.9, ψh(w0;w0) ≥ 0. If there is strict inequality, the nonclassical H+
1 -

H−
1 wave fan will persist until wi1 = w̃1, where ψh switches from positive to negative.

Note that w̃1 = w0 if ψh(w0;w0) = 0. According to our augmented symmetric
kinetics, we continue Wnc

1 (v0, w0) as a portion of H−
1 (v0, w0) until wi1 = w̃2, where

ψh changes from negative to positive. The next segment—to the left of the previous
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one, as wm is decreasing with increasing wi1—of Wnc
1 (v0, w0) will be a nonclassical

one, continuing until wi1 = w̃3, and so on.
This pattern of alternating classical and nonclassical portions of Wnc

1 (v0, w0) may
continue indefinitely. Regardless of the pattern of classical and nonclassical curves, it
follows from Lemmas 3.1 and 3.4 that for (vm, wm) on Wnc

1 (v0, w0), we have vm → −∞
as wm → −∞.

Let {w̃k}, k = 0, 1, 2, . . . , with w̃0 = w0 ≤ w̃1 < w̃2 < · · · , be the set of points
where wi1 ≥ w0 has ψh(wi1 ;w0) = 0. From the above argument, ψh(wi1 ;w0) > 0 for
w̃2k < wi1 < w̃2k+1, while ψh(wi1 ;w0) < 0 when w̃2k+1 < wi1 < w̃2k+2. We can then
describe the portions of allowable nonclassical H+

1 -H−
1 wave fans by

Γ
(2k)
2 =

{

(vm, wm) ∈ H−
1 (vi1 , wi1) | wm = h(wi1), (vi1 , wi1) ∈ H+

1 (v0, w0),

w̃2k ≤ wi1 ≤ w̃2k+1

}(3.38)

for k = 0, 1, 2, . . . . The right-hand endpoint of Γ
(0)
2 represents a single nonclassi-

cal shock from (v0, w0) to the point (v∗0 , h(w0)), so that this precisely matches the
left-hand endpoint of the curve Γ1, calculated previously. The curve Wnc

1 (v0, w0)

is therefore continuous at wm = h(w0). The left-hand endpoint of Γ
(0)
2 , as well as

both endpoints of Γ
(2k)
2 for k > 0, join continuously to the (classical) Hugoniot curve

H−
1 (v0, w0), according to Lemma 3.4. We denote the segments of H−

1 (v0, w0), used in
this construction, by

Γ
(2k+1)
2 =

{

(vm, wm) ∈ H−
1 (v0, w0), | wm = h(wi1), (vi1 , wi1) ∈ H+

1 (v0, w0),

w̃2k+1 ≤ wi1 ≤ w̃2k+2

}

(3.39)

for k = 0, 1, 2, . . . . The curve Wnc
1 (v0, w0) is then given by

Wnc
1 (v0, w0) =















H+
1 (v0, w0) for w > w0,

O1(v0, w0) for 0 ≤ w ≤ w0,
Γ1 for h(w0) ≤ w < 0,

Γ
(0)
2 ∪ Γ

(1)
2 ∪ Γ

(2)
2 ∪ · · · for w < h(w0),

(3.40)

where h(w0) < 0 is determined by symmetric kinetics, and w0 is taken to be positive.
Together, the above union of curves stretches continuously from (v, w) = (−∞,−∞)
to (v, w) = (∞,∞).

We complete the discussion of Wnc
1 (v0, w0) by showing that it increases monoton-

ically in v as a function of w. Since the classical portions of this curve are known from
Lemma 3.1 to be monotone increasing in w, it remains to show that the nonclassical
segments are also increasing. The next lemma shows that, in fact, the curves Γ1 and

Γ
(2k)
2 are monotone increasing.

Lemma 3.12. Suppose (vm, wm) ∈ Γ1 or (vm, wm) ∈ Γ
(2k)
2 . Then vm is mono-

tonically increasing with wm.
Proof of Lemma 3.12. For the point (wm, vm) on Γ1, one calculates that

dvm
dwi1

= − (c̄(wi1 ;wm) − c̄(wi1))
2

2 c̄(wi1 ;wm)
+
dwm

dwi1

(

c(wi1 ;wm) +
(wm − wi1)(2wm + wi1)

2 c(wi1 ;wm)

)

.
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The first term is nonpositive, while the coefficient of the dwm/dwi1 can be shown to
be positive. Since we have dh(wi1)/dwi1 < 0, from Corollary 3.11, it follows that
dvm/dwi1 < 0, and so Γ1 increases from left to right in w. It can further be shown

that for (vm, wm) ∈ Γ
(2k)
2 ,

dvm
dwi1

= (c̄(w0;wi1) − c̄(wm;wi1))

(

1 − c̄2(wi1)

c̄(w0;wi1) − c̄(wm;wi1)

)

+
dwm

dvi1

(

c̄(wi1 ;wm) +
(2wm + wi1)(wm − wi1)

2 c̄(wi1 ;wm)

)

.

Since we have the inequalities c̄(wi1) ≥ c̄(w0;wi1) ≥ c̄(wi1 ;wm) ≥ 0, the first term
is negative, while the coefficient of dwm/dvi1 is again positive. Applying Corollary
3.11, regarding the sign of dh(wi1)/dwi1 , yields the desired monotonicity for vm as a
function of wm.

We now turn to the construction of Wnc
2 (vm, wm). For this discussion, um =

(vm, wm) is taken to be arbitrary. Alternatively, we can view this point as um ∈
Wnc

1 (v0, w0) for some u0 = (v0, w0). To be definite, we take wm > 0, but this discus-
sion could be extended to wm < 0 with little complication. We are interested in the
set of points u1 = (v1, w1) that can be connected to um through either a rarefaction,
classical shock, shock-rarefaction, or a pair of shocks with positive wave speeds; in the
latter two cases, there will be an intermediate state, ui2 = (vi2 , wi2), between um and
u1. A specific kinetic function has been imposed, so that the kinetic relation (3.19)
selects a unique value wi2 = g(wm) from among the possible nonclassical shocks in
H2(vm, wm).

As in the classical case (see Lemma 3.2), when w > wm, this portion of Wnc
2 (vm, wm)

is just O2(vm, wm). Similarly, when 0 < w < wm, we have that this section of
Wnc

2 (vm, wm) matches the classical shock curve H2(vm, wm). To determine how far
this classical shock curve penetrates into the region w < 0, however, the specific
kinetics must be taken into account, as we do below.

The point ui2 ∈ H2(vm, wm), with −wm ≤ wi2 < −wm/2, is the unique right-
hand state for the nonclassical shock, determined by the kinetic relation (3.19). From
ui2 , the solution may be continued, according to Lemma 3.6, along O2(vi2 , wi2) for
w < wi2 . We denote this portion of Wnc

2 (vm, wm) by

Γ4 =

{

(v, w) ∈ O2(vi2 , wi2) | wi2 = g(wm), −∞ < w ≤ wi2

}

.(3.41)

According to Lemma 3.6, one may also continue from ui2 to u1 = (v1, w1) ∈ H2(vi2 , wi2)
for wi2 ≤ w1 ≤ −wm − wi2 . This portion of Wnc

2 (vm, wm) will be labeled by

Γ3 =

{

(v, w) ∈ H2(vi2 , wi2) | wi2 = g(wm), wi2 ≤ w ≤ −wm − wi2

}

.(3.42)

For u1 ∈ H2(vi2 , wi2), with w1 = −wm − wi2 , we saw in Lemma 3.5 that u1 ∈
H2(vm, wm) as well. We may therefore complete the construction of Wnc

2 (vm, wm)
in a continuous manner by extending the classical portion of H2(vm, wm) until w =
−wm − wi2 . This continuous, nonclassical 2-wave curve is then given by

Wnc
2 (vm, wm) =















O2(vm, wm) for w > wm,
H2(vm, wm) for − wm − wi2 < w ≤ wm,
Γ3 for wi2 ≤ w ≤ −wm − wi2 ,
Γ4 for w < wi2 ,

(3.43)
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where wi2 = g(wm) comes from the kinetic relation (3.19). We now show that the
curve Wnc

2 (um) of (3.43) has v monotone decreasing with w.
Lemma 3.13. The curve Wnc

2 (vm, wm) defined in (3.43) is continuous, with v
monotone decreasing in w, from (v, w) = (−∞,∞) to (v, w) = (∞,−∞). Further-
more, Wnc

2 (vm, wm) is C∈ except at w = −wm −wi2 , where it is merely continuous.
Proof of Lemma 3.13. The monotonicity of Wnc

2 (vm, wm) follows from it being
the continuous union of four monotone decreasing curves: Γ4, which is a portion of
O2(vi2 , wi2), has v decreasing for increasing w by (3.9). This integral curve naturally
joins H2(vi2 , wi2) at ui2 with second-order contact, so that Γ3 and Γ4, together, form
a C∈ curve. By (3.7), we have Γ3 decreasing as w increases.

From Lemma 3.6, Γ3 and H2(vm, wm) meet at w = −wm − wi2 , implying con-
tinuity. The remaining portion of Wnc

2 (vm, wm) is classical, and its continuity and
monotonicity follow from Lemma 3.2.

The infinite extent, in v, of Wnc
2 (vm, wm) follows from the divergence of the

integral in (3.9), as |w| → ∞. This proves Lemma 3.13.
Combining Lemmas 3.12 and 3.13, regarding the infinite extent, continuity, and

the respective monotonicities of the nonclassical wave curves, Wnc
1 (v0, w0) and

Wnc
2 (vm, wm), we have in the following theorem our main result of this section.

Theorem 3.14. Given a point (v0, w0), the Riemann problem for system (3.1)
with initial data (u0, u1), where u1 = (v1, w1) is an arbitrary point, has a unique
solution in the class of nonclassical shocks, given a kinetic function ϕ(s) satisfying
assumptions (3.20)–(3.22), and assuming augmented symmetric kinetics for the 1-wave
family.

4. Nonclassical shocks in elastodynamics (2).

4.1. Convergence result. For the model of section 3, the convergence of some
approximations toward weak solutions is easily established, applying the method of
compensated compactness (Murat [49], Tartar [60], DiPerna [13]) as we show in this
subsection. With no uniqueness result available for nonclassical solutions, only sub-
sequences of solutions can be shown to converge. It is one of the challenging open
problems in this area to extend the kinetic relation, introduced in this paper for trav-
eling waves, to more general solutions. This is because the kinetic relation has been
introduced for functions of bounded variation, while the compensated compactness
approach provides solutions in a functional space of less regular functions (i.e., Lp).

Consider the augmented version of the elastodynamics system:

∂tv − ∂xσ(w) = ε ∂xxv − α ε2 ∂xxxw,

∂tw − ∂xv = 0,
(4.1)

where ε and α are positive constants. Here σ is given by (3.2) as in section 3. Regular-
ization terms as in the right-hand side of (4.1) were first studied by Slemrod (see [59]
and Fan and Slemrod [15]) for the case that σ is decreasing in some interval, which
models phase transitions in materials or in fluids; therein the dispersion term models
the capillarity effect of the fluid. As we can demonstrate numerically, the sign of the
dispersion term in (4.1) corresponds to that where nonclassical behavior is observed.

As the coefficients in front of the diffusion and dispersion terms vanish, the so-
lutions to (4.1) converge to a nonclassical solution to the hyperbolic model (3.1).
Observe that the presence of the dispersion term in the right-hand side of the first
equation in (4.1) (and the absence of diffusion in the second equation) prevents ob-
taining an L∞ bound by the theory of invariant regions à la Chuey, Conley, and
Smoller [7]. The theorem below uses Lp estimates, instead.
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Define the internal energy W by W ′(w) = σ(w). From (3.2) one gets W (w) =
(

w4 + 2m2 w2
)

/4.

Theorem 4.1. (1) Let
(

vε, wε
)

, with α ≥ 0 fixed, be a family of solutions to

(4.1) assuming at t = 0 a Cauchy data
(

vε0, w
ε
0

)

satisfying uniform bounds in ε in the
following spaces:

vε0 ∈ L1(R) ∩ L2(R), wε
0 ∈ L1(R) ∩ L4(R), ε1/2 ∂xw

ε
0 ∈ L2(R).(4.2)

Then the sequences vε and wε remain uniformly bounded in L∞
(

R+, L
2(R)

)

and

L∞
(

R+, L
4(R)

)

, respectively, and converge almost everywhere to limiting functions
v and w, solutions to the hyperbolic system (3.1).

(2) The entropy pair (U,F ) =
(

v2/2 + W (w),−v σ(w)
)

is compatible in the
sense (2.3) with the diffusive-dispersive regularization (4.1). Limits of traveling wave
solutions to (4.1), additionally, satisfy the entropy inequality

∂t

(

v2

2
+W (w)

)

− ∂x
(

v σ(w)
)

≤ 0.(4.3)

We do not expect the entropy inequalities

∂tU(v, w) + ∂xF (v, w) ≤ 0,(4.4)

with U(v, w) 6= v2/2 +W (w) (up to a linear function of v and w), to hold in general.
Proof of Theorem 4.1. The bounds in L2 and L4 follow from the following standard

energy estimate. Multiplying the first equation in (4.1) by σ and the second one by
v, we arrive at

∂t
(

W (w)+v2/2
)

−∂x
(

v σ(w)
)

= −ε |∂xv|2+ε ∂x
(

v ∂xv
)

−α ε2 ∂x
(

v ∂xxw
)

+α ε2∂xv ∂xxw.

Using the second equation in (4.1), we rewrite ∂xv ∂xxw = ∂tw ∂xxw = ∂x
(

∂tw ∂xw
)

−
∂t
(

|∂xw|2/2
)

. Therefore we obtain the following entropy balance:

∂t
(

W (w) + v2/2 + α ε2 |∂xw|2/2
)

− ∂x
(

v σ(w)
)

= −ε |∂xv|2 + ε ∂xx
(

v2/2
)

− α ε2 ∂x
(

v ∂xxw
)

+ α ε2∂x
(

∂xv ∂xw
)

.
(4.5)

This leads to the following uniform bound:
∫

R

(

W (w) + v2/2 + α ε2 |∂xw|2/2
)

(T ) dx+

∫ T

0

∫

R

ε |∂xv|2 dxdt

=

∫

R

(

W (w) + v2/2 + α ε2 |∂xw|2/2
)

(0) dx ≤ O(1),

(4.6)

where we have used (4.2) and where O(1) denotes a constant independent on ε.
Multiply the first equation in (4.1) by ∂xw and integrate in space and time to

write, on one hand,
∫ T

0

∫

R

(

∂xw ∂tv − ∂xw σw(w)∂xw
)

dxdt

=

[
∫

R

∂xw v dx

]T

0

−
∫ T

0

∫

R

∂xxv v dxdt−
∫ T

0

∫

R

σw(w) |∂xw|2 dxdt

=

∫

R

∂xw(T ) v(T ) dx−
∫

R

∂xw(0) v(0) dx+

∫ T

0

∫

R

|∂xv|2 dxdt

−
∫ T

0

∫

R

σw(w) |∂xw|2 dxdt



NONCLASSICAL SHOCK WAVES 977

and, on the other hand,

∫ T

0

∫

R

∂xw
(

ε ∂xxv − α ε2 ∂xxxw
)

dxdt

=

∫ T

0

∫

R

ε ∂xw ∂txw dxdt+ α ε2
∫ T

0

∫

R

|∂xxw|2 dxdt

=

[

ε

∫

R

|∂xw|2/2 dx
]T

0

+ α ε2
∫ T

0

∫

R

|∂xxw|2 dxdt.

Observe that
∣

∣

∣

∣

∫

R

∂xw(T ) v(T ) dx

∣

∣

∣

∣

≤ ε

∫

R

|∂xw(T )|2/2 dx+
(

2ε
)−1

∫

R

|v(T )|2 dx,

and similarly for the term ∂xw(0) v(0). Finally, combining the above formulas, we
obtain

∫ T

0

∫

R

ε σw(w) |∂xw|2 dxdt+ α ε2
∫ T

0

∫

R

|∂xxw|2 dxdt

≤
∫ T

0

∫

R

ε |∂xv|2 dxdt+ ε2
∫

R

|∂xw(0)|2 dx+

∫

R

|v(T )|2/2 dx,+
∫

R

|v(0)|2/2 dx.

(4.7)

Combining (4.6) and (4.7) and using the form (3.2) of the function σ, we obtain the
uniform bounds

∫

R

(

v(T )2 + w(T )2 + w(T )4
)

dx+

∫

R

α ε |∂xw(T )|2 dx ≤ O(1),(4.8)

∫ T

0

∫

R

(

ε |∂xv|2 + ε |∂xw|2 + α ε2 |∂xxw|2
)

dxdt ≤ O(1).(4.9)

Using the L2 ×L4 bound derived for the sequence (vε, wε), we introduce a Young
measure representing possible oscillations in the sequence as ε → 0. The estimates
(4.8)–(4.9) are the basis for applying DiPerna’s argument in [13], which shows that
the Young measure satisfies the so-called Tartar commutation equation. The standard
reduction theorem, stating that it must reduce to a Dirac mass, does not apply here
since the support of the Young measure is not bounded.

Instead, the work by Shearer [55] and Serre and Shearer [54] based on Lp estimates
does apply. The system (3.1) is strictly hyperbolic and the constitutive equation σ
possesses a single inflection point. The theorem in [54] implies that there exists a
limiting function (v, w) ∈ L∞(L2 × L4) such that the sequence strongly converges to
(v, w) in the sense

vε → v in Lp for all p < 2,

wε → w in Lp for all p < 2.
(4.10)

Observe that (4.10) suffices for the passage to the limit in (4.1) and in order to derive
(3.1): the nonlinearity σ(w) is cubic while we have a control of w in L4 by the entropy
estimate (4.6).
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Showing that the natural entropy of the system (3.1) is compatible with the
regularization (4.1) is easy from (2.3). It is a classical matter (see Schonbek [53]
and, also, Hayes and LeFloch [22] for the analogous case of scalar equations with
vanishing diffusion and dispersion) to check that, in view of (4.8)–(4.9), the right-
hand side of (4.5) converges to zero in the sense of distributions. The entropy flux
does converge to its corresponding limit since σ(wε) converges strongly to σ(w). The
term α ε ∂t|∂xwε|2 converges to zero in the sense of distributions thanks to (4.8)–(4.9).
Let us, equivalently, check that the product of v and α ε2 ∂xxxw converges to zero.
Namely, for each smooth function θ with compact support,

∣

∣

∣

∣

∫ T

0

∫

R

ε2 v ∂xxxw θ dxdt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

∫

R

ε2 ∂xv ∂xxw θ dxdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

∫

R

ε2 v ∂xxw ∂xθ dxdt

∣

∣

∣

∣

≤ O(1) ε2 ‖∂xv‖L2((0,T )×R) ‖∂xxw‖L2((0,T )×R) +O(1) ε2 ‖v‖L2((0,T )×R) ‖∂xxw‖L2((0,T )×R)

≤ O(1) ε1/2 +O(1) ε → 0.

Further estimates are needed to treat the entropy term in general, since we know only
thatW (wε) is bounded in L∞

t (L1
x) and, therefore, could a priori converge to a bounded

Radon measure. However, in the special case of (smooth) traveling wave solutions to
(4.1), it is straightforward to deduce (4.3) follows from the entropy balance (4.5),
since all of the terms in the right-hand side of (4.5) have a conservative form but one
which is nonpositive.

We now comment upon the derivation a kinetic relation for (3.1) associated with
the regularization (4.1). After rescaling by ε, a traveling wave solution (v, w) to (4.1),
connecting (v0, w0) to (v1, w1) and having the speed s, satisfies the following third
order system of ODEs:

sw′ + v′ = 0,

s v′ + σ(w)′ = −v′′ + αw′′′

together with the conditions v(ξ) → v0, w(ξ) → w0 at ξ → −∞, and v(ξ) → v1,
w(ξ) → w1 at ξ → +∞. We also assume that w′, w′′, and w′′′ vanish at ±∞.
Eliminating the variable v, we obtain an equation for the scalar-valued function w:

−s2 w′ + σ(w)′ = sw′′ + αw′′′.

Integrating once, we obtain

−s2
(

w − w0

)

+ σ(w) − σ(w0) = sw′ + αw′′.(4.11)

Given a value for the shock speed s, there exist up to three states that solve the
equation giving the equilibrium points of (4.11), i.e.,

−s2
(

w − w0

)

+ σ(w) − σ(w0) = 0.(4.12)

Namely, these are w0 itself and (at most) two additional points w1 and w2. Since the
cubic σ(w) = w3 + m2w has no quadratic term, one must have w0 + w1 + w2 = 0.
Consider the case that w0 is chosen such that w0 > 0 and w1 < w2 < 0 which holds
in a certain range of values for s.
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Consider for instance waves of the second characteristic family propagating with
s > 0. From the Liu criterion, it follows that a traveling wave connecting w0 to w1

represents a classical shock, while a connection from w0 to w2 is a nonclassical shock.
A typical feature of (4.11) is the following one [62]: there exists a critical value for
the slope s] such that a traveling wave trajectory connecting to w1 exists for speeds
s > s] and there exists a connection to w2 when s = s].

We emphasize that, given w0, there exist a unique state w2 and a unique speed
such that w0 and w2 can be connected by a nonclassical shock. The traveling wave
analysis therefore allows us to write, say,

w2 = g(w0) and s = s(w0).(4.13)

Using (4.13), the entropy dissipation of the nonclassical shocks can be computed as a
function of the left state of the shock. This determines the kinetic function φ:

φ(w0) := D(w0, w2) = D
(

w0, g(w0)
)

.(4.14)

Provided the relation s = s(w0) is one-to-one, one can rewrite (4.14) and obtain the
kinetic function expressed as a function of the propagation speed, that is,

ϕ(s) := φ(w0) with s2 = w2
0 + g(w0)

2 + w0 g(w0) +m2.(4.15)

The possibility of writing the kinetic function as a function of a single variable (here
w), and hence as a function of the speed s, is a special property of the system (3.1) and
the regularization (4.1). Other regularizations to (3.1), for which a scalar equation
like (4.11) could not be derived, may require a kinetic function of the general form
φ(v0, w0).

4.2. Numerical experiments. The paper [23] is devoted to the numerical anal-
ysis of nonclassical shocks in finite difference schemes. Our purpose here is to illustrate
that nonclassical shocks do indeed appear.

In this subsection, we solve the Riemann problem numerically and confirm some
of the results enumerated in section 3. We employ the following semidiscrete approx-
imation to the augmented system

dvk
dt

− 1

2 ∆

(

σ(wk+1) − σ(wk−1)
)

=
ε

∆2

(

vk+1 − 2 vk + vk−1

)

− α ε2

2 ∆3

(

wk+2 − 2wk+1 + 2wk−1 − wk−2

)

,

dwk

dt
− 1

2 ∆

(

vk+1 − vk−1

)

= 0

(4.16)

for functions wk(t) and vk(t), where ∆ denotes the spatial mesh-size. We integrate
this system of ODEs using a fourth-order Runge–Kutta explicit scheme, taking as
large a time-step τ as possible. We define λ = τ/∆. Here we are interested in the
continuous model (4.16) for small ε. (See [23] for results on numerical schemes.) The
following figures may be taken to represent features of the continuous model (4.1): we
carefully checked that reducing the mesh size further virtually does not change the
numerical results.

The Riemann initial data for the numerical scheme is implemented as (vk(0), wk(0))
= (vl, wl) for k ≤ 0 and (vr, wr) for k > 0. In Figures 4.1–4.2, we plot the numerical
solution for several choices of initial data and parameters ε and α. From these figures,
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Fig. 4.1. Single nonclassical shock: (a) nonclassical 1-shock, (b) nonclassical 2-shock.

we may compare the classical and nonclassical solutions. All the tests are performed
on the interval x ∈ [−3, 3] and with m = 1 in (3.2).

In Figure 4.1(a), we use the initial data (vl, wl) = (1, 1) and (vr, wr) = (−1.5,−2).
The parameters are chosen to be ∆ = 1/400, λ = .2. The component w of the
numerical solution is represented in Figure 4.1(a): the dashed line and the solid line
correspond to α = 0 and α = 10, respectively. In the second case we do observe
nonclassical behavior, i.e., a nonclassical 1-shock.

Figure 4.1(b) is similar to Figure 4.1(a), except that (vr, wr) = (−1.25, 6). The
dashed line represents a nonclassical 2-shock.

Figure 4.2 shows an example of a solution containing two nonclassical shocks,
a 1-shock propagating in the left direction and a 2-shock going to the right. This
is obtained with a suitable choice of the right state: (vr, wr) = (.9,−5). The other
parameters are the same as before. Figures 4.2(a) and 4.2(b) show the w- and v-
component of the numerical solution, respectively.

5. Nonclassical shocks in magnetohydrodynamics.

5.1. Preliminaries. This section deals with a system, introduced by Freistühler
[16], arising in the modeling of small amplitude solutions to conservation laws that
are rotationally invariant:

∂tv + ∂x
(

(v2 + w2) v
)

= 0,

∂tw + ∂x
(

(v2 + w2)w
)

= 0.
(5.1)

In magnetohydrodynamics, (v, w) represents transverse components of the magnetic
field. This model is relevant to explain certain features observed in the solar wind
around the Earth: Cohen and Kulsrud [8] and Wu and Kennel [65]. The model and
its variants also arise in nonlinear elasticity. See also the interesting paper by Brio
and Hunter [4]. The study of MHD traveling waves has a long history in the math-
ematical literature (consult, for instance, Conley and Smoller [9]). The system (5.1)
has attracted attention of many researchers in recent years: Chen [6], Freistühler [17],
Keyfitz and Kranzer [32], Liu and Wang [44], etc. Freistühler and Liu [19] established
the nonlinear stability of overcompressive shocks for a parabolic regularization of the
system (5.1).
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Fig. 4.2. Nonclassical shocks in both characteristic families: (a) w-component, (b) v-component.

For smooth solutions, one can use polar coordinates

v = r cos θ, w = r sin θ, r ≥ 0, θ ∈ [0, 2π),(5.2)

and rewrite (5.1) as

∂tr + ∂xr
3 = 0,(5.3)

∂tθ + r2 ∂xθ = 0.(5.4)

The equation (5.3) is a scalar conservation law with a nonconvex (cubic) flux. We
deduce from (5.3) that λ2 = 3 r2 is a wave speed for (5.1); it is the fast mode of
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the system and the corresponding characteristic field therefore fails to be genuine
nonlinear. On the other hand, (5.4) is linearly degenerate since the slow mode wave
speed λ1 = r2 is independent of θ.

Observe that the system is strictly hyperbolic everywhere but at the so-called
umbilic point v = w = 0 or equivalently r = 0. The change of variable (5.2) is in
fact ill defined at r = 0 since the angle θ may be arbitrary. The structure (5.3)–(5.4)
reflects the property of invariance by rotation or isotropy of (5.1). There exists two
main wave families:

• the rotational discontinuities keep the radius r constant while the angle θ may
vary arbitrarily. Any entropy inequality would be satisfied by rotational discontinu-
ities.

• the fast shocks keep the angle θ constant modulo π while the radius r may
vary arbitrarily. An entropy inequality would select admissible fast shocks among
all possible such shocks. Note that a rotational discontinuity always precedes a fast
shock.

Consider now particular solutions to (5.1) such that w = ρ v, where ρ is a given
constant. Such solutions will be called coplanar in this section. Then both equations
in (5.1) reduce to the same equation,

∂tv +
(

1 + ρ2
)

∂xv
3 = 0,(5.5)

which is a scalar conservation law with cubic flux. Therefore, when the initial data
for (5.1) are coplanar, one can attempt to solve the system (5.1) by solving the
reduced equation (5.5). This is a saddle issue: the transformation w = ρ v need
not be compatible with a given regularization added to the right-hand side of (5.1).
However, in several instances the solutions to (5.5) turn out to be relevant to describe
the solutions to (5.1). Note finally that the “natural” entropy for (5.1),

U(v, w) =
1

2

(

v2 + w2
)

=
r2

2
, F (v, w) =

3

4

(

v2 + w2
)2

=
3 r4

4
,(5.6)

reduces, when w = ρ v, to an entropy pair for (5.5),

U(v) =
1

2
v2, F (v, w) =

3

4

(

1 + ρ2
)

v4,(5.7)

which happens to be the one used in [22].

5.2. Unique admissible nonclassical entropy solution. The existence and
properties of the nonclassical shocks for the cubic conservation law (5.3) were investi-
gated in Hayes and LeFloch [22]. The equation (5.3), however, is supplemented with
the constraint that r ≥ 0, which prevents us from truly solving (5.3) independently of
(5.4) for θ, even for coplanar initial data. The definitions in section 2 extend easily to
(5.1) even though the system is not strictly hyperbolic. We are interested in solutions
satisfying the single entropy inequality

1

2
∂t
(

v2 + w2
)

+
3

4
∂x
(

v2 + w2
)2 ≤ 0.(5.8)

Our aim is to investigate the uniqueness of the nonclassical solutions for the system
(5.1). Relying on the analysis in [22] we state, without proof, the following result.

Theorem 5.1. Consider the Riemann problem for the system (5.1) with initial
data (vl, wl) and (vr, wr). When the data are noncoplanar, then there exists a unique
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solution to the Riemann problem satisfying the entropy inequality (5.8): it contains a
rotational discontinuity connecting (vl, wl) to a point (v∗, w∗) with v2

l +w2
l = v2

∗ +w2
∗

followed by either a fast shock or a rarefaction connecting to (vr, wr).
When the data are coplanar and the angles θl and θr associated with the initial

data satisfy θr = θr (mod. π), the Riemann problem has a unique solution containing
either a classical shock or a rarefaction.

When the data are coplanar and θr = π + θr (mod. π), the Riemann problem
admits a one-parameter family of entropy solutions containing a nonclassical shock
connecting (vl, wl) to a point (v∗, w∗) with

v2
l + w2

l ≤ v2
∗ + w2

∗ ≤ v2
l + w2

l ,(5.9)

followed by either a fast shock or a rarefaction connecting to (vr, wr).
In the latter case, we can impose across the nonclassical shock a kinetic relation

of the form

−s 1

2

[

v2 + w2
]

+
3

4

[(

v2 + w2
)2]

= ϕ(s),(5.10)

where the kinetic function ϕ(s) satisfies the property (s ≥ 0)

− 3

4
s2 ≤ ϕ(s) ≤ 0,

dϕ

ds
(s) ≤ 0.

(5.11)

A unique solution is selected by (5.10) in the one-parameter family of solutions. This
solution depends continuously (in the L1 norm) on its end states for coplanar initial
data.

We refer to Hayes and LeFloch [22] for further details on the Riemann solution to
the cubic conservation law (5.3). A solution to (5.1) using only classical shock waves
always exists. We emphasize that the one-parameter family of solutions constructed in
Theorem 5.1 includes as special cases the classical Riemann solution (defined from the
Oleinik criterion) and the Riemann solution using a rotational discontinuity followed
by a fast shock. For noncoplanar data, the Riemann solution constructed in Theorem
5.1 does not depend continuously upon its initial states. (Consider “quasi-coplanar”
initial data.) It is conceivable that this lack of continuity may be related to physical
instabilities in MHD fluid which cannot be fully described by the model (5.1).

The coplanar discontinuities connecting (rL, θL) to (r, θ) with r ∈ (0, rL/2) and
θ = θL + π are overcompressive shock waves. They possess nonunique traveling
wave profiles, due to the existence of a component θ. When viewed as shock to the
underlying scalar cubic conservation law, they are classical shocks, however.

5.3. Convergence result. As we now demonstrate it numerically in section
5.4 below, the solutions found in Theorem 5.1 may arise from diffusive-dispersive
regularizations of (5.1). We consider here the system (ε > 0, α ∈ R)

∂tv + ∂x(v (v2 + w2)) = ε ∂xxv + α ε ∂xxw,

∂tw + ∂x(w (v2 + w2)) = ε ∂xxw − α ε ∂xxv,
(5.12)

called the derivative nonlinear Schrödinger–Burgers system. The right-hand side of
(5.12) represents diffusive-dispersive effects arising in magnetic fluids due to the so-
called Hall effect. When the ion inertia dispersion α can be neglected, (5.12) reduces
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to the Cohen–Kulsrud–Burgers (CKB) equations and converges, as ε→ 0, to classical
solutions. When α 6= 0, the operator α∂xx in the right-hand side of (5.12) generates
dispersion effect and nonclassical solutions may be obtained.

Theorem 5.2. (1) Let
(

vε, wε
)

with α ∈ (−1, 1) fixed be a family of solutions

to (5.12) assuming at t = 0 a Cauchy data
(

vε0, w
ε
0

)

such that

vε0, w
ε
0 ∈ L2(R) ∩ L4(R)(5.13)

uniformly in ε. Then
(

vε, wε
)

is bounded in L∞
(

R+, L
2(R) ∩ L4(R)

)

and converges
almost everywhere to a limiting function (v, w), a solution to (5.1) in the sense of
distributions.

(2) The pair (U,F ) =
(

(v2 + w2)/2, 3 (v2 + w2)2/4
)

is compatible in the sense
(2.3) with the diffusive-dispersive regularization (5.12). Limits of traveling wave solu-
tions to (5.12) additionally satisfy the entropy inequality (5.8).

Proof of Theorem 5.2. The proof relies on the compensated compactness method
of DiPerna [13] and more specifically the results in Chen [6]. We restrict attention to
deriving the main a priori estimates needed in applying the theory, referring to [6, 13]
for the details. The following entropy balance follows by multiplying the equations in
(5.12) by v and w, respectively:

1
2∂t
(

v2 + w2
)

+ 3
4∂x
(

v2 + w2
)2

= − ε |∂xv|2 − ε |∂xw|2

+ε ∂x
(

v ∂xv + w ∂xw
)

+ α ε ∂x
(

v ∂xw − w ∂xv
)

.

(5.14)

Integrating (5.14) over (0, T ) × R yields

∫

R

1

2

(

v2 + w2
)

(T ) dx+

∫ T

0

∫

R

ε
(

|∂xv|2 + |∂xw|2
)

dxdt ≤
∫

R

1

2

(

v2 + w2
)

(0) dx ≤ O(1).

(5.15)

Observe that the dispersive terms canceled out in this derivation, so that the estimate
(5.15) does not depend on the coefficient α ∈ R.

We now multiply (5.14) on both sides by v2 + w2 and integrate over R to get

d

dt

∫

R

1

4

(

v2 + w2
)2
dx+

∫

R

1

2
∂x
(

v2 + w2
)3
dx

=−
∫

R

ε
(

v2 + w2
) (

|∂xv|2 + |∂xw|2
)

dx−
∫

R

ε
∣

∣∂x
(

v2 + w2
)
∣

∣

2
dx

+

∫

R

α ε
(

v2 + w2
)

∂x
(

v ∂xw − w ∂xv
)

dx.

(5.16)

Thus we obtain
∫

R

1

4

(

v2 + w2
)2

(T ) dx +

∫ T

0

∫

R

ε
(

v2 + w2
) (

|∂xv|2 + |∂xw|2
)

dxdt

+

∫ T

0

∫

R

ε
∣

∣∂x
(

v2 + w2
)
∣

∣

2
dxdt

=

∫

R

1

4

(

v2 + w2
)2

(0) dx+

∫ T

0

∫

R

α ε
(

v2 + w2
) (

v ∂xw − w ∂xv
)

dxdt.

(5.17)



NONCLASSICAL SHOCK WAVES 985

When |α| < 1, the integrand of the last term in the right-hand side of (5.17) can be
estimated by integrands of the left-hand side, namely,

∣

∣α ε ∂x
(

v2 + w2
) (

v ∂xw − w ∂xv
)
∣

∣ ≤ α

2
ε
∣

∣∂x
(

v2 + w2
)
∣

∣

2
+
α

2
ε
∣

∣v ∂xw − w ∂xv
∣

∣

2

≤ α

2
ε
∣

∣∂x
(

v2 + w2
)∣

∣

2
+ α ε

∣

∣v ∂xw
∣

∣

2
+ α ε

∣

∣w ∂xv
∣

∣

2

≤ α

2
ε
∣

∣∂x
(

v2 + w2
)∣

∣

2

+ α ε
(

v2 + w2
) (

|∂xv|2 + |∂xw|2
)

.

Therefore (5.17) implies

∫

R

1

4

(

v2 + w2
)2

(T ) dx+

∫ T

0

∫

R

(

1 − α/2
)

ε
(

v2 + w2
) (

|∂xv|2 + |∂xw|2
)

dxdt

+

∫ T

0

∫

R

(

1 − α
)

ε
∣

∣∂x
(

v2 + w2
)∣

∣

2
dxdt ≤ 0.

(5.18)

The estimates (5.15) and (5.18) provide Lp uniform bounds for vε and wε, together
with some derivative estimates. These estimates can be used along the lines of the
proof in Schonbek [53] (and [22]) to show that a Young measure associated with
(vε, wε) satisfies Tartar’s commutation equation. The reduction theorem in [6] may
be extended to Lp Young measures and shows that

vε → v, wε → w in the weak sense,

v2
ε + w2

ε → v2 + w2 in the strong sense.
(5.19)

One can pass to the limit in (5.12) and deduce (5.1) as ε→ 0.
Item (2) of the theorem follows from (5.14) and the uniform estimates (5.18).

Observe that the first two terms in the right-hand side of (5.14) are nonpositive and
converge to nonnegative bounded measures. The third term converges to zero in the
sense of distributions. On the other hand the last term in the right-hand side of (5.14),
due to the dispersive terms in (5.12), does not contribute to the dissipation measure
(for the quadratic entropy only); namely, for each smooth function θ with compact
support, one has

∣

∣

∣

∣

∫ T

0

∫

R

ε ∂x
(

v ∂xw − w ∂xv
)

θ dxdt

∣

∣

∣

∣

≤
∫ T

0

∫

R

ε
∣

∣v ∂xw
∣

∣ ∂xθ dxdt

+

∫ T

0

∫

R

ε
∣

∣w ∂xv
∣

∣ ∂xθ dxdt

≤ O(1) ε ‖v ∂xw‖
L2
(

(0,T )×R

)

+O(1) ε ‖v ∂xw‖
L2
(

(0,T )×R

)

≤ O(1) ε1/2 → 0.

This completes the proof of Theorem 5.2.

5.4. Numerical experiments. For coplanar initial data, we numerically demon-
strate the existence of nonclassical shocks. We employ the following semidiscrete
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Fig. 5.1. The slow shock is nonclassical: it cannot be a rotational wave, since across this shock,

|um|2 < |ul|
2.

approximation to the system (5.12):

dvk
dt

+
1

2 ∆

(

vk+1 (v2
k+1 + w2

k+1) − vk−1 (v2
k−1 + w2

k−1)
)

=
ε

∆2

(

vk+1 − 2 vk + vk−1

)

+
α ε

∆2

(

wk+1 − 2wk + wk−1

)

,

dwk

dt
+

1

2 ∆

(

wk+1 (v2
k+1 + w2

k+1) − wk−1 (v2
k−1 + w2

k−1)
)

=
ε

∆2

(

wk+1 − 2wk + wk−1

)

− α ε

∆2

(

vk+1 − 2 vk + vk−1

)

(5.20)

for functions vk(t) and wk(t), where ∆ denotes the spatial mesh-size. We integrate
this system of ODEs in the same fashion as in subsection 4.2. The Riemann initial
data for the numerical scheme are implemented as (vk(0), wk(0)) = (vl, wl) for k ≤ 0
and (vr, wr) for k > 0.

In Figure 5.1, we plot the numerical results for two different coplanar data. The
parameters are chosen to be ∆ = 1/400, ε = 1/800, and α = 5/2. In Figure 5.1(a), we
use the initial data (vl, wl) = (1, 0) and (vr, wr) = (−.6, 0). The solid and the dotted
lines represent the v- and w-components of the solution at the time t = 1, respectively.
In Figure 5.1(b), we picture the results obtained with, instead, (vr, wr) = (−.85, 0).

Appendix: Proof of Lemma 2.3. We follow Liu in [42] and treat the case
(2.10a). The case (2.10b) is entirely similar. The statement on the wave speed follows
easily from our assumption that ∇λj · rj changes sign only once along a shock curve.
Let us show that the shock speed satisfies similar properties. By differentiating the
Rankine–Hugoniot relation (2.13), we get

− ∂

∂µj
λ̄j(u0, wj)(wj − u0) +

(

Df(wj) − λ̄j(u0, wj)
)dwj

dµj
= 0.(A.1)

Using the decompositions

wj − u0 =

N
∑

k=1

αk(u0, wj) rk(wj)
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and

dwj

dµj
=

N
∑

k=1

βk(u0, wj) rk(wj),

we deduce that, for k = 1, 2, . . . , N,

− ∂

∂µj
λ̄j(u0, wj)αk(u0, wj) +

(

λk(wj) − λ̄j(u0, wj)
)

βk(u0, wj) = 0.

In particular, for k = j,

∂

∂µj
λ̄j(u0, wj)αj(u0, wj) =

(

λj(wj) − λ̄j(u0, wj)
)

βj(u0, wj).

In view of our assumption (2.21), the coefficient αj(u0, wj) = lj(wj) · (wj − u0) has
the same sign as µj − µj(u0), while βj(u0, wj) = lj(wj) · dwj/dµj is strictly positive.
Therefore for µj > µj(u0) we have

∂

∂µj
λ̄j(u0, wj) = 0 (resp., > 0 or < 0

)

iff(A.2)

λj(wj) − λ̄j(u0, wj) = 0 (resp., < 0 or > 0
)

,

while for µj < µj(u0) the reversed inequalities are satisfied. Moreover it follows from
(A.1) that (up to a multiplicative factor)

dwj

dµj
= rj(wj) if

∂

∂µj
λ̄j(u0, wj) = 0.(A.3)

Denote by µ?
j (u0) a point achieving the equality in (A.2). We now prove that, at

the critical point µj = µ?
j (u0),

∂2

∂µ2
j

λ̄j(u0, wj) = 0 (resp., > 0 or < 0
)

iff(A.4)

∇λj(wj) · rj(wj) = 0 (resp., < 0 or > 0
)

if µ?
j (u0) > µj(u0), while the reversed inequalities are satisfied if µ?

j (u0) < µj(u0).
Namely, first rewrite the relation (A.1) (by using (A.3)) in the form

(

Df(wj) − λ̄j(u0, wj)
)

(

dwj

dµj
− rj(wj)

)

=
∂

∂µj
λ̄j(u0, wj)(wj − u0) −

(

λj(wj) − λ̄j(u0, wj)
)

rj(wj).

(A.5)

Differentiating (A.5) once more, we obtain

∂

∂µj

(

Df(wj) − λ̄j(u0, wj)
)

(

dwj

dµj
− rj(wj)

)

+
(

Df(wj) − λ̄j(u0, wj)
)

(

d2wj

dµ2
j

− ∂

∂µj
rj(wj)

)

=
∂2

∂µ2
j

λ̄j(u0, wj)(wj − u0) +
∂

∂µj
λ̄j(u0, wj)

dwj

dµj

− ∂

∂µj

(

λj(wj) − λ̄j(u0, wj)
)

rj(wj) −
(

λj(wj) − λ̄j(u0, wj)
) ∂

∂µj
rj(wj).
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Plugging the value µj = µ?
j (u0) in the above formula and using (A.2)–(A.3), we obtain

(

Df(wj) − λ̄j(u0, wj)
)

(

d2wj

dµ2
j

− ∂

∂µj
rj(wj)

)

=
∂2

∂µ2
j

λ̄j(u0, wj)(wj − u0)

− ∂

∂µj
λj(wj) rj(wj).

Multiplying the latter by lj(wj) and observing that λ̄j(u0, wj) = λj(wj) so that the
left-hand side vanishes, we arrive at

∂2

∂µ2
j

λ̄j(u0, wj) lj(wj) · (wj − u0) =
∂

∂µj
λj(wj)

= ∇λj(wj) · rj(wj).

The desired result (A.4) follows immediately from the above formula and assumption
(2.21ii).

We now use the notation g(µj) := λj(wj(µj ;u0)) and h(µj) := λ̄j(u0, wj(µj ;u0)).
The property (A.2) shows that (2.24a) is satisfied for values µj close enough to µj(u0),
at least. Consider the largest value µj < µj(u0) such that h(ζj)− g(ζj) > 0 holds for
all ζ ∈ (µj , µj(u0). Call this value µ?

j (u0) and observe that h(µ?
j (u0)) = g(µ?

j (u0)). In
view of (A.2) one also has h′(µ?

j (u0)) = 0.
Assume that µ?

j (u0) > 0. In view of (A.4), one has h′′(µ?
j (u0)) > 0 since µ?

j (u0) >
0. Thus the function should decrease for µj < µ?

j (u0) at least in a small neighborhood
of µ?

j (u0). According to (A.2), the wave speed should then be above the shock speed
in this range, and so the wave speed g should be nonincreasing. The function g is
increasing near µj(u0) and nonincreasing near µ?

j (u0), so g must have a critical point

in the interval
[

µ?
j (u0), µj(u0)

)

. Since the only critical point of the wave speed is
µj = 0 and µ?

j (u0) > 0 by assumption, we reach a contradiction. Henceforth, one
must have µ?

j (u0) ≤ 0.
Finally the shock speed is monotone in the whole region µj < µ?

j (u0), since
otherwise that would imply the existence of a critical point for the function g, which
is not possible. This completes the proof of Lemma 2.3.
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