A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Multiple periodic solutions for discrete boundary value problem involving the mean curvature operator
2022
Open Mathematics
In this article, by using critical point theory, we prove the existence of multiple T T -periodic solutions for difference equations with the mean curvature operator: − Δ ( ϕ c ( Δ u ( t − 1 ) ) ) + q ( t ) u ( t ) = λ f ( t , u ( t ) ) , t ∈ Z , -\Delta ({\phi }_{c}\left(\Delta u\left(t-1)))+q\left(t)u\left(t)=\lambda f\left(t,u\left(t)),\hspace{1em}t\in {\mathbb{Z}}, where Z {\mathbb{Z}} is the set of integers. As a T T -periodic problem, it does not require the nonlinear term is unbounded or
doi:10.1515/math-2022-0509
fatcat:x44ikmly5ngghikj6ftjtsgskq