TEL/AML1 overcomes drug resistance through transcriptional repression of multidrug resistance-1 gene expression

Keiko Asakura, Hideo Uchida, Hayato Miyachi, Hiroyuki Kobayashi, Yoshitaka Miyakawa, Stephen D Nimer, Hiroyuki Takahashi, Yasuo Ikeda, Masahiro Kizaki
2004 Molecular Cancer Research  
The t(12;21)(p12;q22) chromosomal aberration, which is frequently observed in pediatric precursor B-cell acute lymphoblastic leukemia (ALL), generates the TEL/AML1 chimeric gene and protein. TEL/AML1-positive ALL has a favorable prognosis, and one possible reason is that this subtype of ALL rarely shows drug resistance. AML1/ETO, another AML1-containing chimeric protein, has been shown to transcriptionally repress the activity of the multidrug resistance-1 (MDR-1) gene promoter; thus, we
more » ... d whether TEL/AML1 also represses MDR-1 gene expression, possibly preventing the emergence of multidrug resistance. In this study, we show that the TEL/AML1 protein binds to the consensus AML1 binding site in the MDR-1 promoter and transcriptionally represses its activity. Following transient transfection of TEL/AML1 protein into Adriamycin-resistant K562/Adr cells, we also demonstrate that TEL/AML1 can down-regulate the expression of P-glycoprotein, a product of the MDR-1 gene, and restore the chemosensitivity to the cells. Furthermore, we report that MDR-1 mRNA levels in leukemic cells obtained from TEL/AML1-positive ALL patients are lower than those from TEL/AML1-negative ALL patients. Thus, TEL/AML1 protein acts as a transcriptional repressor of MDR-1 gene expression, and although TEL/AML1 has been implicated in leukemogenesis, its effects on the MDR-1 gene may contribute to the excellent prognosis of TEL/AML1-positive ALL with current therapy.
pmid:15235109 fatcat:qjc3as72vzdlbo3xsigdyb7hii