VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction [article]

Arjun D Desai, Beliz Gunel, Batu M Ozturkler, Harris Beg, Shreyas Vasanawala, Brian A Hargreaves, Christopher Ré, John M Pauly, Akshay S Chaudhari
2022 arXiv   pre-print
Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, and are sensitive to distribution drifts. In this work, we propose applying physics-driven data augmentations for consistency training that leverage our domain knowledge of the forward MRI data
more » ... ion process and MRI physics to achieve improved label efficiency and robustness to clinically-relevant distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong improvements over supervised baselines with and without data augmentation in robustness to signal-to-noise ratio change and motion corruption in data-limited regimes; (2) considerably outperforms state-of-the-art purely image-based data augmentation techniques and self-supervised reconstruction methods on both in-distribution and out-of-distribution data; and (3) enables composing heterogeneous image-based and physics-driven data augmentations. Our code is available at https://github.com/ad12/meddlr.
arXiv:2111.02549v2 fatcat:wy2wxgo6ive6hnat6we4yn4wtm