A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="https://core.ac.uk/download/pdf/82710164.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Dyck paths and a bijection for multisets of hook numbers
<span title="">2002</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a>
</i>
We give a bijective proof of a result of Regev and Vershik (Electron J. Combin. 4 (1997) R22) on the equality of two multisets of hook numbers of certain skew-Young diagrams. The bijection is given in terms of Dyck paths, a particular type of lattice path. It is extended to also prove a recent, more reÿned result of Regev (European J. Combin. 21 (2000) 959) , which concerns a special class of skew diagrams.
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(01)00356-9">doi:10.1016/s0012-365x(01)00356-9</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/pwc5f5tx5jg3njpnbfxv7hbg4a">fatcat:pwc5f5tx5jg3njpnbfxv7hbg4a</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190416055225/https://core.ac.uk/download/pdf/82710164.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/e5/70/e57086151d356bd9101c1e0ac799c1b16f63788b.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(01)00356-9">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
elsevier.com
</button>
</a>