Abnormalities of Cortical Sources of Resting State Delta Electroencephalographic Rhythms Are Related to Epileptiform Activity in Patients With Amnesic Mild Cognitive Impairment Not Due to Alzheimer's Disease

Claudio Babiloni, Giuseppe Noce, Carlo Di Bonaventura, Roberta Lizio, Maria Teresa Pascarelli, Federico Tucci, Andrea Soricelli, Raffaele Ferri, Flavio Nobili, Francesco Famà, Eleonora Palma, Pierangelo Cifelli (+4 others)
2020 Frontiers in Neurology  
In the present exploratory and retrospective study, we hypothesized that cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms might be more abnormal in patients with epileptiform EEG activity (spike-sharp wave discharges, giant spikes) and amnesic mild cognitive impairment not due to Alzheimer's disease (noADMCI-EEA) than matched noADMCI patients without EEA (noADMCI-noEEA). Clinical, neuroimaging, neuropsychological, and rsEEG data in 32 noADMCI and 30 normal
more » ... derly (Nold) subjects were available in a national archive. Age, gender, and education were carefully matched among them. No subject had received a clinical diagnosis of epilepsy. Individual alpha frequency peak (IAF) was used to determine the delta, theta, and alpha frequency bands of rsEEG rhythms. Fixed beta and gamma bands were also considered. Regional rsEEG cortical sources were estimated by eLORETA freeware. Area under receiver operating characteristic (AUROC) curves indexed the accuracy of eLORETA solutions in the classification between noADMCI-EEA and noADMCI-noEEA individuals. As novel findings, EEA was observed in 41% of noADMCI patients. Furthermore, these noADMCI-EEA patients showed higher temporal delta source activities as compared to noADMCI-no EEA patients and Nold subjects. Those activities discriminated individuals of the two NoADMCI groups with an accuracy of about 70%. The significant percentage of noADMCI-EEA patients showing EEA and marked abnormalities in temporal rsEEG rhythms at delta frequencies suggest a substantial role of underlying neural hypersynchronization mechanisms in their brain dysfunctions.
doi:10.3389/fneur.2020.514136 pmid:33192962 pmcid:PMC7644902 fatcat:jyoneyonxrevpghciaprcxyk4q