Machine Learning Methods for Preterm Birth Prediction: A Review

Tomasz Włodarczyk, Szymon Płotka, Tomasz Szczepański, Przemysław Rokita, Nicole Sochacki-Wójcicka, Jakub Wójcicki, Michał Lipa, Tomasz Trzciński
<span title="">2021</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="" style="color: black;">Electronics</a> </i> &nbsp;
Preterm births affect around 15 million children a year worldwide. Current medical efforts focus on mitigating the effects of prematurity, not on preventing it. Diagnostic methods are based on parent traits and transvaginal ultrasound, during which the length of the cervix is examined. Approximately 30% of preterm births are not correctly predicted due to the complexity of this process and its subjective assessment. Based on recent research, there is hope that machine learning can be a helpful
more &raquo; ... ool to support the diagnosis of preterm births. The objective of this study is to present various machine learning algorithms applied to preterm birth prediction. The wide spectrum of analysed data sets is the advantage of this survey. They range from electrohysterogram signals through electronic health records to transvaginal ultrasounds. Reviews of works on preterm birth already exist; however, this is the first review that includes works that are based on a transvaginal ultrasound examination. In this work, we present a critical appraisal of popular methods that have employed machine learning methods for preterm birth prediction. Moreover, we summarise the most common challenges incurred and discuss their possible application in the future.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.3390/electronics10050586</a> <a target="_blank" rel="external noopener" href="">doaj:40d0cd7fe240444a90fd6efcd5c4c7d8</a> <a target="_blank" rel="external noopener" href="">fatcat:ge7qmyowwffchbche7beh77rfe</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> </button> </a>