A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit <a rel="external noopener" href="http://www.umiacs.umd.edu/%7Eramani/pubs/PLS_ICASSP2011_2969.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
A partial least squares framework for speaker recognition
<span title="">2011</span>
<i title="IEEE">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/rc5jnc4ldvhs3dswicq5wk3vsq" style="color: black;">2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</a>
</i>
Modern approaches to speaker recognition (verification) operate in a space of "supervectors" created via concatenation of the mean vectors of a Gaussian mixture model (GMM) adapted from a universal background model (UBM). In this space, a number of approaches to model inter-class separability and nuisance attribute variability have been proposed. We develop a method for modeling the variability associated with each class (speaker) by using partial-least-squares -a latent variable modeling
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icassp.2011.5947548">doi:10.1109/icassp.2011.5947548</a>
<a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/icassp/SrinivasanZD11.html">dblp:conf/icassp/SrinivasanZD11</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dodfty7wjfhv7b4kspkpwkwl4e">fatcat:dodfty7wjfhv7b4kspkpwkwl4e</a>
</span>
more »
... que, which isolates the most informative subspace for each speaker. The method is tested on NIST SRE 2008 data and provides promising results. The method is shown to be noise-robust and to be able to efficiently learn the subspace corresponding to a speaker on training data consisting of multiple utterances.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170921221254/http://www.umiacs.umd.edu/%7Eramani/pubs/PLS_ICASSP2011_2969.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/04/a4/04a49868ae371626239d8997001993a99978400d.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icassp.2011.5947548">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
ieee.com
</button>
</a>