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1. Introduction

In [1] it was proposed that theories in D-dimensional de Sitter space could have a

holographic dual which is a conformal �eld theory in D-1 dimensional Euclidean space.

In particular, in [1, 2] supersymmetric theories were identi�ed for which an argument

analogous to that of [3] for anti-de Sitter holography could be made. These included

a �ve dimensional de Sitter vacuum arising from a solution of the type IIB∗ string

theory. This solution preserves 32 supersymmetries and also arises as a solution of a

�ve dimensional gauged supergravity. The proposed dual theory is the N=4 supercon-

formal Yang-Mills theory in four Euclidean dimensions. Unfortunately, both the D=5

supergravity and the D=4 super-Yang-Mills theories are non-standard in that they have

some �elds with kinetic terms of the wrong sign. However, it was pointed out in [1]

that the super-Yang-Mills theory that arises in this way is precisely the one that can

be twisted to obtain a topological �eld theory. This should correspond to a twisting of

the �ve dimensional supergravity theory, so that the 't Hooft limit of the topological

�eld theory should have a dual description as a topological supergravity theory in �ve

dimensional de Sitter space.

In four Euclidean dimensions, the Lorentz group is Spin(4) ∼= SU(2)×SU(2). In the

usual twistings, Spin(4) or an SU(2) subgroup thereof is identi�ed with a subgroup of

the R-symmetry group. In the N=4 theories, this necessarily breaks the R-symmetry

group. It was pointed out in [1] that the R-symmetry group is in fact the same as the

conformal group in such theories, so there is the possibility of twisting the whole of the

R-symmetry group with the conformal group, and this seems the most natural twisting

to use in the holographic context. The purpose of this paper is to further develop these

proposals, and in particular to construct a new topological conformal �eld theory in

which the conformal group is twisted with the whole of the R-symmetry group.

It will be useful to begin by reviewing two ways of viewing topological �eld theories.

Consider �rst the twisting of N=2 supersymmetric Yang�Mills to give a topological

theory whose observables are the Donaldson invariants [4]. The N=2 supersymmetric

Yang�Mills theory in 3+1 dimensions can be obtained by reducing D=6 N=2 super-

symmetric Yang�Mills theory on a spatial 2-torus. The D=6 theory has an SU(2)

R-symmetry and the reduction gives a theory with U(2) R-symmetry, the extra SO(2)

being related to rotations in the 5-6 plane. (This SO(2) would be broken if one were
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to keep the massive Kaluza-Klein modes.) The bosonic sector is Lie-algebra valued

and consists of a vector �eld and two scalars, which transform as a 2-vector under the

SO(2). The Wick rotated version of this theory is usually taken to be a theory in four

Euclidean dimensions with U(2) R-symmetry and the same bosonic sector. There are

the usual subtleties as to how one treats the fermions, but however one proceeds, the

resulting theory in four Euclidean dimensions has no conventional supersymmetry.

However, there is a simple way of obtaining a supersymmetric theory in four Eu-

clidean dimensions. One can simply start with the D=6 theory and reduce on one

space and one time dimension, and the resulting theory in four Euclidean dimensions

will automatically be invariant under N=2 supersymmetry [5, 6]. The R-symmetry of

this theory is SU(2) × SO(1, 1) and one of the scalar �elds (the one arising from the

time component of the D=6 vector �eld) has a kinetic term of the wrong sign; this

sign is necessary for the non-compact R-symmetry and for invariance under Euclidean

supersymmetry. Following [1], it will be convenient to refer to this as a Euclidean �eld

theory and to the Wick-rotated one as a Euclideanised �eld theory.

The twisting of [4] was originally formulated in terms of the Euclideanised theory,

with symmetry Spin(4)×U(2) ∼= SU(2)× SU(2)× SU(2)× SO(2). An SU(2) subgroup

of the Spin(4) Lorentz symmetry is twisted with the SU(2) subgroup of the U(2) R-

symmetry, so that one of the supercharges becomes a scalar BRST charge. Equivalently,

di�erent twistings correspond to regarding di�erent embeddings of Spin(4) ∼= SU(2)×
SU(2) in Spin(4) × SU(2) ∼= SU(2) × SU(2) × SU(2) as the Lorentz symmetry group.

However, in this approach, there are some subtleties in �nding the action invariant

under the twisted supersymmetry, and in particular, the sign of the kinetic term of

one of the two original scalars must be changed, so that the twisted theory has an

SO(1, 1) symmetry instead of the original SO(2) [4]; this SO(1, 1) symmetry is the ghost-

number symmetry, with the charge of a �eld being its ghost-number. In performing

the functional integral, the problematic scalar is usually analytically continued φ→ iφ.

The negative-norm states corresponding to this �eld are not in the BRST cohomology

and in this sense are not physical.

However, this topological �eld theory with SO(1, 1) ghost-number symmetry can be

constructed directly by twisting the Euclidean N=2 supersymmetric Yang�Mills theory

[5, 6]. In this case the twisting of an SU(2) subgroup of the Spin(4) with the SU(2)

subgroup of the SU(2) × SO(1, 1) R-symmetry is straightforward and automatically

gives a theory invariant under twisted supersymmetry, and the SO(1, 1) ghost number

symmetry is inherited directly from the Euclidean theory. For the Euclideanised the-

ory, the extra sign changes needed to obtain twisted supersymmetry corresponded in

the untwisted theory to changing the non-supersymmetric Euclideanised theory with

SU(2)×SO(2) R-symmetry to the supersymmetric Euclidean one with SU(2)×SO(1, 1)

R-symmetry. The construction from twisting the Euclidean theory is clearly the more

economical and straightforward.

The situation is similar for the N=4 theories. Reducing supersymmetric Yang�
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Mills from 9+1 to 4 dimensions can give either a Lorentzian theory in 3+1 dimensions

with Spin(6) R-symmetry or to a theory in four Euclidean dimensions with Spin(5, 1)

R-symmetry. Both theories have a vector and six scalars, which transform as a 6-

vector under the R-symmetry, and both are invariant under N=4 supersymmetry. Wick

rotating the Lorentzian theory gives the Euclideanised theory with Spin(6) R-symmetry

and no conventional supersymmetry. Both the Euclidean and the Euclideanised theories

have 6 scalars, but in the Euclidean theory, one of the scalars has a kinetic term of the

wrong sign.

The corresponding topological �eld theories were constructed from the twisting of

the Spin(4) ∼= SU(2)L × SU(2)R Lorentz symmetry of the Euclideanised theory with a

Spin(4) ∼= SU(2)1 × SU(2)2 subgroup of the R-symmetry, embedded as

Spin(4)× Spin(2) ⊂ Spin(6). (1.1)

There are three inequivalent topological twistings [7, 8, 9, 10]. In the half-twisted model,

one twists SU(2)L by SU(2)1, in the B-model or diagonal twisting one in addition twists

SU(2)R by SU(2)2, while in the A-model one twists SU(2)L by the diagonal subgroup

SU(2)D of SU(2)1×SU(2)2. In constructing the invariant twisted action, it is necessary

to change some signs and in particular the sign of the kinetic term of one of the scalars,

so that the SO(2) R-symmetry in (1.1) becomes an SO(1, 1), which is the ghost-number

symmetry.

Again, the twistings can be constructed more directly from the Euclidean theory,

which automatically generates a theory with twisted supersymmetry without needing

to add further sign changes by hand. In this case, the Lorentz symmetry is twisted

with the Spin(4) subgroup embedded in the R-symmetry group as

Spin(4)× Spin(1, 1) ⊂ Spin(5, 1) (1.2)

in one of the three inequivalent ways described above.

There are then three related Yang-Mills theories in four dimensions, the Lorentzian

one, the Euclidean one and the Euclideanised one. They have Lorentz and R-symmetries

given respectively by

Spin(3, 1)× Spin(6), Spin(4)× Spin(5, 1), Spin(4)× Spin(6). (1.3)

The �rst two have 16 supersymmetries, while the Euclideanised one has none. Each of

these theories is in fact conformally invariant, so that the Lorentz group is enlarged to

the conformal group, and the three theories have bosonic symmetries given by

Spin(4, 2)× Spin(6), Spin(5, 1)× Spin(5, 1), Spin(5, 1)× Spin(6), (1.4)

respectively. The Lorentzian and Euclidean theories are in fact superconformally in-

variant, with conformal supergroups SU(2, 2|4) and SU∗(4|4) respectively.

The three twistings described above all explicitly break the R-symmetry. However,

when viewed as a twisting of the Euclidean theory, there is in addition a fourth possible
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twisting [1]. The Euclidean theory has symmetry Spin(5, 1) × Spin(5, 1) and there is

the possibility of twisting the whole of the conformal symmetry with the whole of the

R-symmetry group, giving a theory manifestly invariant under the diagonal Spin(5, 1)

subgroup. One of our aims here is to present this conformal twisting. There are some

subtleties arising as the conformal group is non-linearly realised. Our approach will

be to start with the B-model in which the Spin(4) Lorentz symmetry is twisted with

a Spin(4) subgroup of the R-symmetry. This theory is however not invariant under

the full conformal group [9]�it is invariant under dilatations but not under special

conformal transformations. We will �nd modi�cations of the usual special conformal

transformations that are a symmetry of the SO(4) twisted theory, and use these to

construct further twistings, resulting in a topological conformal �eld theory with a

BRST charge and an anti-BRST charge, both of which are invariant under the twisted

conformal group.

This paper is organised as follows. In Section 2 we will discuss the group theory

behind the conformal twisting of the Euclidean N=4 supersymmetric Yang�Mills the-

ory. We also discuss the topological conformal �eld theories arising from twisted N=2

supersymmetric theories at conformal �xed points. In Section 3 we discuss the SO(4)

twisted Euclidean N=4 theory and its symmetries, and in particular �nd new mod-

i�cations of the standard special conformal transformations that are a symmetry of

the theory. We �nd linear combinations of (modi�ed) conformal transformations and

R-symmetries that constitute the twisted Spin(5, 1) symmetry of this theory. These

twisted conformal generators do not commute with the scalar supercharges, but rather

yield extra conformal supercharges. We will then show that two linear combinations of

the supercharges are conformally invariant and de�ne an anticommuting pair of con-

formally invariant BRST operators. The conformal symmetry in the twisted theory

does not act in the standard way. We partially resolve this in Section 4 by rede�ning

the �elds in such a way that the conformal transformations take a more standard form,

giving a new form of the action invariant under the twisted conformal group and BRST

charges.

In Section 5, we construct the conserved BRST-exact symmetric traceless energy-

momentum tensor of the �at space twisted theory. Then, in Section 6 we couple the

theory to gravity, adding non-minimal terms to the minimally-coupled action to obtain

a theory which is invariant under Weyl rescalings and two BRST symmetries, with an

action that is BRST-exact. This allows us to brie�y discuss the topological invariants

arising as observables in the theory.

In Section 7 we discuss the theta-term in the action and S-duality. Finally, in

Section 8 we discuss some of the implications of our results to the arguments of [1] that

such a topological conformal �eld theory should have a holographic description as a

theory in 5-dimensional de Sitter space.

We also mention here some other work, not directly related to ours, that has been

done on topological �eld theories and holography in recent years. A version of topolog-
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ical holography in three dimensions has been developed. On the gauge theory side this

involves Chern�Simons theory, describing knot and three manifold invariants. There is

a description of this theory using open topological A-strings ending on a Lagrangian

submanifold of a Calabi-Yau threefold [11]. In [12] it was proposed for the case of

the three sphere that there is a dual formulation of this Chern�Simons theory based on

closed topological A strings on the resolved conifold. This proposal has since been elab-

orated and extended (see [13] and references therein). A four dimensional topological

�eld theory and its possible holographic dual has also been discussed in [14].

2. Twisting and group theory

Dimensional reduction of (9+1)-dimensional supersymmetric Yang�Mills from R9,1 to

R4 gives the four dimensional Euclidean N=4 supersymmetric Yang�Mills theory. The

ten-dimensional theory has sixteen supercharges in a real chiral representation 16 of the

spin group Spin(9, 1). After dimensional reduction, the R-symmetry group is Spin(5, 1),

which is isomorphic to SU∗(4) ∼= SL(2,H), with right and left handed complex Weyl

spinor representations of complex dimension 4, which we will denote 4 and 4′ respec-
tively. Under Spin(9, 1) ⊃ SU(2)× SU(2)× SU∗(4), the spinors decompose as

16 → (2, 1, 4′)⊕ (1, 2, 4). (2.1)

We introduce indices I, J = 1, ..., 4 labelling the 4 of SU∗(4), I ′, J ′ = 1, ..., 4 for the 4′

of SU∗(4), A,B = 1, 2 labelling the 2 of the �rst SU(2) and Ȧ, Ḃ = 1, 2 for the 2 of the

second SU(2). All of these indices are raised or lowered by complex conjugation,

One must take the underlying real representation of a complex representation R with

a real structure: the Majorana condition on a spinor in the 16 of Spin(9, 1) becomes

a symplectic Majorana condition in four dimensions. For example, the spinor λAI′ in

the (2, 1, 4′) arising from the reduction of a Majorana-Weyl fermion in 10 dimensions

satis�es the reality condition

(λ∗)AI′
= εABΩI′J ′

λBJ ′ , (2.2)

where ΩI′J ′
is the symplectic invariant of SU∗(4) (which can be thought of as the charge

conjugation matrix in 5+1 dimensions).

On dimensional reduction, the ten-dimensional super-Poincaré generators MMN , PM

(M,N = 1, ...10) and Q decompose into the generators Mmn and Pm (m,n = 1, ..., 4) of

the four-dimensional Euclidean group ISO(4), the SO(5, 1) R-symmetry generators Rµν

(antisymmetric in µ, ν, with µ, ν = 1, ..., 6), and the supercharges QI′A and QIȦ. The

supercharge QI′A transforms in the (2, 1, 4′) representation of SU(2)×SU(2)×SU∗(4),

whilst QIȦ transforms in the (1, 2, 4).

The four-dimensional theory is superconformally invariant, with superconformal

group SU∗(4|4) (a di�erent real form of SU(2, 2|4)) generated by the super-Poincaré

generators together with the dilatation D, the special conformal generator Km and the
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conformal supercharges SI′Ȧ and SIA. The bosonic subgroup is Spin(5, 1)×Spin(5, 1) ∼=
SU∗(4)× SU∗(4), the product of the Euclidean conformal group and the R-symmetry.

The 32 (conformal) supercharges transform in the (4′, 4) ⊕ (4, 4′) representation of

SU∗(4)×SU∗(4), with a symplectic Majorana condition using the symplectic invariants

of both factors.

The conformal twisting is the diagonal embedding g 7→ (g, g) of the conformal group

SU∗(4) in the bosonic symmetry SU∗(4)× SU∗(4). Under the diagonal embedding, we

have

[(4′, 4)] → 15⊕ 1 and [(4, 4′)] → 15⊕ 1 , (2.3)

yielding two scalar supercharges. The bosonic generators of SU∗(4)×SU∗(4) give under

the embedding (15, 1) → 15 and (1, 15) → 15. The bracket of any two fermionic scalar

supercharges must be a scalar bosonic generator. As there are none, we conclude that

the scalar supercharges anticommute with each other and each squares to zero. In

other words, the twisted theory has two (anticommuting) BRST operators. After the

twisting, one has symmetry under the diagonal subgroup SU∗(4)D, which we will refer

to as the twisted conformal group.

The conformal group SU∗(4) is non-linearly realised, but there is a subgroup CSpin(4) :=

SU(2)× SU(2)× R+ ⊂ SU∗(4), generated by the spin group and the dilatations, which

is a manifest symmetry of the Euclidean N=4 supersymmetric Yang�Mills theory. In

particular, all �elds transform as irreducible representations of CSpin(4)× SU∗(4).

The generators of the original superconformal algebra are

{Pm,Mmn,D,Km,Rµν ,QI′A,QIȦ, SIA, SI′Ȧ}, (2.4)

transforming in the following representation of G = SU(2)× SU(2)× R+ × SU∗(4):

(2, 2, 1)+2 ⊕ (3, 1, 1)0 ⊕ (1, 3, 1)0 ⊕ (1, 1, 1)0 ⊕ (2, 2, 1)−2

⊕ (1, 1, 15)0 ⊕ (2, 1, 4)−1 ⊕ (1, 2, 4′)−1 ⊕ (2, 1, 4′)+1 ⊕ (1, 2, 4)+1 ,

with the superscript indicating the R+ conformal grading. In turn, the generators Rµν of

the SU∗(4) R-symmetry transform as the 15 of SU∗(4), which breaks into the following

representations of the subgroup SU(2)× SU(2)× R+:

(2, 2)+2 ⊕ (3, 1)0 ⊕ (1, 1)0 ⊕ (1, 3)0 ⊕ (2, 2)−2. (2.5)

Introducing indicesm′, n′ = 1, ..., 4 for the SO(4) subgroup of SO(5, 1), the R-symmetry

generators then decompose as

Rµν 7→ {pm′ ,mm′n′, d, km′} , (2.6)

with the SU(2) × SU(2) × R+ generated by mm′n′ and d. The R+ gradings of the

generators {pm′ ,mm′n′ , d, km′} are thus {2, 0, 0,−2}.
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The Spin(4) twisting to give the B-model of [9] is achieved by twisting the action

of the rotation generators Mmn with the action of the R-symmetry generators mm′n′, so

that the resulting theory is manifestly invariant under the new spin generators de�ned

by

Mmn ≡ Mmn + mmn, (2.7)

with the indices m,n identi�ed with m′, n′. This can then be enhanced to a CSpin(4)

twisting by twisting the action of the dilatation D with the action of the d ghost number

R+ symmetry, to obtain a twisted dilatation generator

D ≡ D + d. (2.8)

Then the twisted conformal weight of a �eld is the sum of the conformal weight (de�ned

as half the R+ conformal grading) and ghost number.

To obtain the full conformal twisting, one must in addition twist the momenta Pm

and the special conformal generators Km by the appropriate R-symmetry generators,

so that the twisted conformal generators are

Pm ≡ Pm + pm

Mmn ≡ Mmn + mmn

D ≡ D + d

Km ≡ Km + km .

(2.9)

Under the CSpin(4) twist, the spinor supercharges, which transform as the (2, 1, 4′)+1⊕
(1, 2, 4)+1 of CSpin(4)× SU∗(4), are twisted to generators in the following representa-

tions of the diagonal CSpin(4):

(2, 1, 4′)+1 ⊕ (1, 2, 4)+1 → (3, 1)0 ⊕ (1, 1)0 ⊕ (2, 2)+2 ⊕ (2, 2)+2 ⊕ (1, 3)0 ⊕ (1, 1)0.

(2.10)

This corresponds to the replacements {QI′A,QIȦ} → {Q±(0)
[mn],Q

(0), Q̃(0),Q
(+2)
m , Q̃

(+2)
m }

and similarly one has {SI′Ȧ, SIA} → {S±(0)
[mn], S

(0), S̃(0), S
(−2)
m , S̃

(−2)
m }. Using this then al-

lows the original superconformal algebra to be decomposed in terms of brackets involv-

ing the twisted supercharges. We are primarily interested in the scalar supercharges

here (ie the singlets Q, Q̃, S, S̃) and their algebra is found to be (dropping the super-

scripts denoting the R+ conformal gradings)

[Q,Pm] = −Qm

[Q,Km] = −S̃m

[S,Pm] = Q̃m

[S,Km] = −Sm

[Q, S] = −4D

[Q̃,Pm] = Q̃m

[Q̃,Km] = −Sm

[S̃,Pm] = Qm

[S̃,Km] = S̃m

[Q̃, S̃] = −4D

(2.11)
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where we have only written down the non-zero brackets. The linear combinations

Q := Q + S̃, Q̃ := Q̃− S (2.12)

square to zero, anticommute with each other, and commute with the twisted conformal

generators:

[Q,X] = [Q̃,X] = 0 for any X ∈ {Pm,Mmn,D,Km,Q, Q̃} . (2.13)

The Spin(5, 1) generators {Pm,Mmn,D,Km} satisfy the algebra

[Mmn,Mpq] = δmpMnq + δnqMmp − δmqMnp − δnpMmq

[Mmn,Pp] = δmpPn − δpnPm

[Mmn,Kp] = δmpKn − δpnKm

[D,Pm] = Pm

[D,Km] = −Km

[Km,Pn] = 2δmnD+ 2Mmn ,

(2.14)

with all other brackets vanishing.

It is interesting to ask how much of this structure survives for twisted N=2 theories

at conformal �xed points. Such theories have been investigated in [15, 16]. A twisted

N=2 theory is invariant under Poincaré symmetry, together with the symmetries gen-

erated by a BRST charge Q and a ghost number charge d. At a conformal �xed point,

the theory is invariant under the conformal group, which is generated by the twisted

Lorentz generators Mmn together with {Pm,D,Km}, and also invariant under the ghost

number symmetry generated by d, the BRST symmetry generated by Q and a confor-

mal BRST generated by S, arising from twisting the conformal supersymmetry. These

satisfy a subalgebra of the algebra discussed above, but without the generators Q̃, S̃.

In this case, there do not seem to be any further twistings that lead to conformally

invariant BRST operators of the type discussed above.

3. The diagonally twisted N=4 theory and conformal invariance

Before twisting, the �elds of the Euclidean N=4 supersymmetric Yang�Mills theory

are Am, λIA, λI′Ȧ, φIJ , with φ antisymmetric in its indices. Consider �rst the diagonal

twisting of the SO(4) Lorentz symmetry with an SO(4) subgroup of the R-symmetry

to obtain the B-model. The vector �eld is an R-singlet and remains unchanged, while

the 6 scalars φIJ twist to a vector Vm and two scalars B,C. The fermions λ twist

to give the anticommuting �elds ψm, ψ̃m, χ
±
mn, η, η̃, where χ

±
mn are 2-forms satisfying

χ±mn = ± ∗ χ±mn. We de�ne (X[mn])
± ≡ 1

2
(X[mn] ± ∗X[mn]) and X[mn] ≡ 1

2
(Xmn −Xnm).
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The Spin(4) twisted action is [9]:

S(0) =
1

e2

∫
d4x Tr

(
−DmBDmC −DmVnDmV n − 1

4
FmnF

mn

+ Dmψn(4χ+mn − δmnη) + Dmψ̃n(4χ−mn − δmnη̃)

− i
8
√

2
((4χ+

mn − δmnη)[4χ
+mn − δmnη, C] + (4χ−mn − δmnη̃)[4χ

−mn − δmnη̃, C])

− i
√

2 ((4χ+
mn − δmnη)[ψ̃

m, V n]− (4χ−mn − δmnη̃)[ψ
m, V n])

+ i
√

2 (ψm[ψm, B] + ψ̃m[ψ̃m, B])

− 1
2
[B,C]2 + 2[B, Vm][C, V m] + [Vm, Vn][V

m, V n]

)

− iθ

32π2

∫
d4x Tr ∗FmnF

mn .

(3.1)

We follow the notation in [17]. Also Dm := ∂m+i[Am, ] is the gauge covariant derivative

acting on the �elds, which are valued in the adjoint representation of the Lie algebra

of the non-abelian gauge symmetry group. The �eld strength is

Fmn = ∂mAn − ∂nAm + i[Am, An], (3.2)

while e is the usual Yang�Mills coupling constant and θ is the theta-parameter, which

will be discussed further in section 7.

The theory is invariant under the SO(1, 1) scale transformations generated by the

dilatation D, with each �eld having a conformal weight c, and under the SO(1, 1)

subgroup of the SO(5, 1) R-symmetry group that commutes with the SO(4) that was

twisted. This is generated by d and is usually referred to as the ghost-number symmetry,

with the SO(1, 1) weight of each �eld referred to as the ghost number g of that �eld.

The �elds

{B,C,Am, Vm;ψm, ψ̃m, χ
±
mn, η, η̃} (3.3)

have conformal weights and ghost numbers {(c, g)} given by

{(1, 1), (1,−1), (1, 0), (1, 0); (3/2,−1/2), (3/2,−1/2), (3/2, 1/2), (3/2, 1/2), (3/2, 1/2)},
(3.4)

respectively. The twisted dilatation was de�ned as D ≡ D + d and for a �eld with D, d

weights {(c, g)}, the weight with respect to D is c+ g. Then the twisted bosonic �elds

are

{B(2), C(0), A(1)
m , V (1)

m }, (3.5)

and the fermionic �elds are

{ψ(1)
m , ψ̃(1)

m , χ(2)±
mn , η(2), η̃(2)}, (3.6)
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where the superscripts (suppressed in the following) give the twisted conformal weight

c+g. The twisted theory is automatically invariant under the twisted scale transforma-

tions generated by D and so can be regarded as a twisting of CSpin(4) rather than just of

Spin(4). The twisted dilatations act in the standard way, i.e., D·Φ = (xn∂n+(c+g)Φ)Φ,

with the weight (c+ g)Φ for each �eld Φ de�ned as above.

As discussed in the previous section, twisting produces various fermionic charges.

In particular, we will be interested in the scalar BRST supercharges Q and Q̃. The

action of these on the �elds is given by

Q · Am = 2ψm

Q · ψm =
√

2DmC

Q · ψ̃m = −2i[Vm, C]

Q · χ+
mn = −F+

mn + 2i[Vm, Vn]+

Q · χ−mn = 2
√

2 (D[mVn])
−

Q · η = 2i[B,C]

Q · η̃ = −2
√

2DmV
m

Q · B =
√

2 η

Q · C = 0

Q · Vm = −
√

2 ψ̃m

Q̃ ·Am = −2ψ̃m

Q̃ · ψm = −2i[Vm, C]

Q̃ · ψ̃m = −
√

2DmC

Q̃ · χ+
mn = 2

√
2 (D[mVn])

+

Q̃ · χ−mn = F−
mn − 2i[Vm, Vn]

−

Q̃ · η = −2
√

2DmV
m

Q̃ · η̃ = −2i[B,C]

Q̃ ·B = −
√

2 η̃

Q̃ · C = 0

Q̃ · Vm = −
√

2ψm.

(3.7)

The associated in�nitesimal transformations are given as usual by δQX ≡ εQ ·X and

δQ̃X ≡ ε̃Q̃ ·X, where ε and ε̃ are the corresponding anti-commuting scalar parameters.

The BRST operators Q and Q̃ are nilpotent and anticommute with each other, up

to gauge transformations and on-shell (utilising the χ±, η and η̃ equations of motion

from (3.1)). The on-shell condition may be removed by introducing auxiliary �elds in

a standard way [17].

The other symmetries of the theory include the following. First we have the twisted

rotations, which act in the usual way:

Mmn ·Ap = (xm∂n − xn∂m)Ap + δmpAn − δnpAm

Mmn · ψp = (xm∂n − xn∂m)ψp + δmpψn − δnpψm

Mmn · ψ̃p = (xm∂n − xn∂m)ψ̃p + δmpψn − δnpψ̃m

Mmn · χ±pq = (xm∂n − xn∂m)χ±pq − δmpχ
±
nq − δnpχ

±
mq + δmqχ

±
pn − δnqχ

±
pm

Mmn · η = (xm∂n − xn∂m)η

Mmn · η̃ = (xm∂n − xn∂m)η̃

Mmn ·B = (xm∂n − xn∂m)B

Mmn · C = (xm∂n − xn∂m)C

Mmn · Vp = (xm∂n − xn∂m)Vp + δmpVn − δnpVm .

(3.8)
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The spacetime translations act in the standard way,

Pm · Φ = ∂mΦ (3.9)

for all �elds Φ.

The R-symmetry generators pm, km lead to the following symmetries of the twisted

theory:

pm · ψp = −1
2
(4χ−mp + δmpη̃)

pm · ψ̃p = 1
2
(4χ+

mp + δmpη)

pm · C = 2Vm

pm · Vp = −δmpB ,

(3.10)

and, using δk de�ned by δkX = κmkm ·X,

δkχ
+
pq = −2(κ[pψ̃q])

+

δkχ
−
pq = 2(κ[ppsiq])

−

δkη = −2κmψ̃m

δkη̃ = 2κmψm

δkB = 2κmVm

δkVp = −κpC .

(3.11)

The original N=4 theory was conformally invariant, but the twisted theory is invari-

ant under scale transformations generated by D, but not under the conformal boosts in

which Km acts in the standard way [9], so that in this sense it is scale invariant but not

conformally invariant. The trace of the stress tensor is non-zero, but is a total deriva-

tive, so that the integral over R4 of the trace of the stress tensor vanishes (with suitable

boundary conditions), signalling dilatation invariance. However, we have found some

modi�cations of the action of the action of Km that are a symmetry of the action (3.1).

These are conveniently written using δK, de�ned by δKX = κmKm ·X. One �nds

δKAp = κm(2xmx · ∂ − x2∂m + 2xm)Ap + 4κ[pxq]A
q

δKψp = κm(2xmx · ∂ − x2∂m + 3xm)ψp + 4(κ[pxq])
−ψq

δKψ̃p = κm(2xmx · ∂ − x2∂m + 3xm)ψ̃p + 4(κ[pxq])
+ψ̃q

δKχ
+
pq = κm(2xmx · ∂ − x2∂m + 2xm)χ+

pq − 4(κ[px
kχ+

q]k)
+ − (κ[pxq])

+η

δKχ
−
pq = κm(2xmx · ∂ − x2∂m + 2xm)χ−pq − 4(κ[px

kχ−q]k)
− − (κ[pxq])

−η̃

δKη = κm(2xmx · ∂ − x2∂m + 3xm)η + 4κmxnχ+
mn

δKη̃ = κm(2xmx · ∂ − x2∂m + 3xm)η̃ + 4κmxnχ−mn

δKB = κm(2xmx · ∂ − x2∂m + 2xm)B

δKC = κm(2xmx · ∂ − x2∂m + 2xm)C

δKVp = κm(2xmx · ∂ − x2∂m + 2xm)Vp.

(3.12)
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These are not standard conformal boost transformations due to the presence of extra

terms, some of which mix di�erent �elds.

The algebra of these symmetries does not close to give the conformal algebra (2.14),

and in particular the commutator of P and K is not of the right form. However, from

the discussion of the previous section, we are interested in the full Spin(5, 1) twisting

in which the full conformal group is twisted with the full R-symmetry group, and

in particular this means twisting P with p and K with k. We therefore consider the

symmetries generated by

Pm ≡ Pm + µpm

Km ≡ Km + µ−1km ,

(3.13)

where we have included an arbitrary parameter µ. Notice that the scalings p → µp, k →
1
µ
k leave invariant the SO(5, 1) R-symmetry algebra generated by {p, k,m, d}.
For these new translations we thus have

Pm · Ap = ∂mAp

Pm · ψp = ∂mψp − 1
2
µ(4χ−mp + δmpη̃)

Pm · ψ̃p = ∂mψ̃p + 1
2
µ(4χ+

mp + δmpη)

Pm · χ±pq = ∂mχ
±
pq

Pm · η = ∂mη

Pm · η̃ = ∂mη̃

Pm · B = ∂mB

Pm · C = ∂mC + 2µVm

Pm · Vp = ∂mVp − µδmpB ,

(3.14)

and for the new special conformal transformations, using δK de�ned by δKX = κmKm·X,

we have

δKAp = κm(2xmx · ∂ − x2∂m + 2xm)Ap + 4κ[pxq]A
q

δKψp = κm(2xmx · ∂ − x2∂m + 3xm)ψp + 4(κ[pxq])
−ψq

δKψ̃p = κm(2xmx · ∂ − x2∂m + 3xm)ψ̃p + 4(κ[pxq])
+ψ̃q

δKχ
+
pq = κm(2xmx · ∂ − x2∂m + 2xm)χ+

pq − 4(κ[px
kχ+

q]k)
+ − (κ[pxq])

+η − 2µ−1(κ[pψ̃q])
+

δKχ
−
pq = κm(2xmx · ∂ − x2∂m + 2xm)χ−pq − 4(κ[px

kχ−q]k)
−−(κ[pxq])

−η̃ + 2µ−1(κ[pψq])
−

δKη = κm(2xmx · ∂ − x2∂m + 3xm)η + 4κmxnχ+
mn − 2µ−1κmψ̃m

δKη̃ = κm(2xmx · ∂ − x2∂m + 3xm)η̃ + 4κmxnχ−mn + 2µ−1κmψm

δKB = κm(2xmx · ∂ − x2∂m + 2xm)B + 2µ−1κmVm

δKC = κm(2xmx · ∂ − x2∂m + 2xm)C

δKVp = κm(2xmx · ∂ − x2∂m + 2xm)Vp − µ−1κpC .

(3.15)
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One can check that the generators {Pm,Mmn,D,Km} as de�ned above are symmetries

of the action (3.1) and satisfy the Spin(5, 1) algebra (2.14) for any µ.

Just as twisting the ordinary supersymmetries of the N=4 theory gives a number

of fermionic generators, including the two scalar BRST charges Q, Q̃, twisting the

conformal supersymmetries also gives a set of fermionic symmetries including those

generated by two further scalar charges S and S̃. We will call these SBRST generators.

They generate the following symmetries of the action (3.1)

S · Am = −xn(4χ+
mn − δmnη)

S · ψm = 2xnF−
mn − ixm[B,C] + 4ixn[Vm, Vn]+

S · ψ̃m =
√

2[4xn(D[mVn])
− − 2x[mDnVn] + (xnDn + 2)Vm]

S · χ+
mn = −2

√
2(x[mDn])

+B

S · χ−mn = 4i[(x[mVn])
−, B]

S · η = −2
√

2(xnDn + 2)B

S · η̃ = −4i[xnVn, B]

S · B = 0

S · C = −2
√

2xnψn

S · Vm = 1√
2
xn(4χ−mn + δmnη̃)

(3.16)

and

S̃ · Am = xn(4χ−mn − δmnη̃)

S̃ · ψm =
√

2[4xn(D[mVn])
+ − 2x[mDnVn] + (xnDn + 2)Vm]

S̃ · ψ̃m = −2xnF+
mn + ixm[B,C]− 4ixn[Vm, Vn]

−

S̃ · χ+
mn = 4i[(x[mVn])

+, B]

S̃ · χ−mn = 2
√

2(x[mDn])
−B

S̃ · η = −4i[xnVn, B]

S̃ · η̃ = 2
√

2(xnDn + 2)B

S̃ · B = 0

S̃ · C = 2
√

2xnψ̃n

S̃ · Vm = 1√
2
xn(4χ+

mn + δmnη) .

(3.17)

The corresponding in�nitesimal transformations are given as usual by δSX = ξS · X
and δS̃X = ξ̃S̃ ·X, with ξ and ξ̃ the fermionic scalar parameters.

The brackets between all the scalar supercharges Q, Q̃, S, S̃ vanish (on-shell and up

to gauge transformations) except for

[Q, S] = −4D , [Q̃, S̃] = −4D . (3.18)

The SO(4) twisted theory with action (3.1) also has a discrete Z2 symmetry which

acts on both the �elds and the coupling constants in the following way. It leaves
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Am, B, C, e invariant. It reverses orientation: εmnpq 7→ −εmnpq, so that θ 7→ −θ. De�n-
ing

τ :=
4π

e2
− i

θ

2π
, (3.19)

we have that τ 7→ τ̄ . On the remaining �elds and constants, it acts as follows:

χ±mn 7→ −χ∓mn

(ψm, ψ̃n) 7→ (−ψ̃m,−ψn)

(η, η̃) 7→ (−η̃,−η)
Vm 7→ −Vm

µ 7→ −µ .

(3.20)

This symmetry leaves the action (3.1) invariant and it exchanges the scalar (S)BRST

generators (Q, S) 7→ (Q̃, S̃).

Although the theory (3.1) is conformally invariant and has four (S)BRST symme-

tries, it is not the case that the (S)BRST supercharges are themselves conformally

invariant, i.e., they are not singlets under the action of the SO(5, 1) generated by

M,P,D,K. This is clear from (3.18) and the fact that D is not central in the conformal

algebra. Nevertheless the two linear combinations

Q := Q + µS̃, Q̃ := Q̃− µS, (3.21)

satisfy

Q2 = 0, Q̃2 = 0, {Q, Q̃} = 0 (3.22)

(on-shell and up to gauge transformations). We will call these scalar supercharges

CBRST charges (the C denoting `conformal'). These charges commute with the con-

formal generators and are mapped into each other by the Z2 symmetry above. They

are the two scalar supercharges of the group theoretical analysis in Section 2; see (2.3).

4. Rede�ning the �elds

In the previous section we have shown that the SO(4) twisted theory with action

(3.1) is conformally invariant and moreover that there are two CBRST symmetries

commuting with the conformal generators. Nevertheless, the action of the conformal

generators does not take the standard form�for example, the �elds do not transform

conventionally under the translations Pm. It is clear that this must occur in general

in situations like this where one twists the ordinary translations with a corresponding

internal symmetry. This unconventional behaviour under the translations Pm will cause

complications, for example when considering de�ning the theory on a curved manifold.
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It is thus convenient, after having done the twisting as in the previous section, to undo

the R-symmetry translations pm by rede�ning all �elds Φ according to

Φ → (e−µxmpm) · Φ. (4.1)

Explicitly, this gives the following �eld rede�nitions

Vm 7→ Vm + µxmB

C 7→ C − 2µxmVm − µ2x2B

ψm 7→ ψm − 1
2
µxn(4χ−mn − δmnη̃)

ψ̃m 7→ ψ̃m + 1
2
µxn(4χ+

mn − δmnη) .

(4.2)

Note that these rede�nitions are consistent with the Z2 symmetry.

It is straightforward to calculate the e�ect of the {Mmn,Pm,D} twisted generators

on the rede�ned �elds. These are taken as transformations that act on the �elds but

not on the space-time coordinates xm. In particular, Pm does not transform the explicit

xm in the rede�nitions (4.2), with the result that its action on the rede�ned �elds is,

by construction, now the standard action

Pm · Φ = ∂mΦ (4.3)

on any �eld Φ. Since Mmn and D commute with xmpm, the action of the twisted

dilatations and rotations remains standard

Mmn · Φ = (xm∂n − xn∂m + Σmn)Φ

D · Φ = (xn∂n + ∆Φ)Φ ,

(4.4)

where Σmn are the generators of the spin group in the representation determined by the

spin of Φ and ∆Φ is the twisted conformal weight of Φ. However, the special conformal

transformations still contain non-standard µ-dependent terms:

δKAp = κm(2xmx · ∂ − x2∂m + 2xm)Ap + 4κ[pxq]A
q

δKψp = κm(2xmx · ∂ − x2∂m + 2xm)ψp + 4κ[pxq]ψ
q

δKψ̃p = κm(2xmx · ∂ − x2∂m + 2xm)ψ̃p + 4κ[pxq]ψ̃
q

δKχ
+
pq = κm(2xmx · ∂ − x2∂m + 4xm)χ+

pq − 8(κ[px
kχ+

q]k)
+ − 2µ−1(κ[pψ̃q])

+

δKχ
−
pq = κm(2xmx · ∂ − x2∂m + 4xm)χ−pq − 8(κ[px

kχ−q]k)
− + 2µ−1(κ[pψq])

−

δKη = κm(2xmx · ∂ − x2∂m + 4xm)η − 2µ−1κmψ̃m

δKη̃ = κm(2xmx · ∂ − x2∂m + 4xm)η̃ + 2µ−1κmψm

δKB = κm(2xmx · ∂ − x2∂m + 4xm)B + 2µ−1κmVm

δKC = κm(2xmx · ∂ − x2∂m)C

δKVp = κm(2xmx · ∂ − x2∂m + 2xm)Vp + 4κ[pxq]V
q − µ−1κpC .

(4.5)
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These transformations di�er from the usual transformations

δKΦ = κm(2xmx · ∂ − x2∂m + 2xm∆Φ + 2xnΣmn)Φ (4.6)

by the addition of extra terms proportional to µ−1. These µ−1 terms imply the loss of

special conformal symmetry in the µ→ 0 limit.

In terms of the rede�ned �elds the CBRST symmetry remains simple:

Q ·Am = 2ψm

Q · ψm =
√

2DmC

Q · ψ̃m = −2i[Vm, C]

Q · χ+
mn = −F+

mn + 2i[Vm, Vn]
+

Q · χ−mn = 2
√

2 (D[mVn])
−

Q · η = 2i[B,C]

Q · η̃ = −2
√

2 (DmV
m + 2µB)

Q ·B =
√

2 η

Q · C = 0

Q · Vm = −
√

2 ψ̃m

Q̃ · Am = −2ψ̃m

Q̃ · ψm = −2i[Vm, C]

Q̃ · ψ̃m = −
√

2DmC

Q̃ · χ+
mn = 2

√
2 (D[mVn])

+

Q̃ · χ−mn = F−
mn − 2i[Vm, Vn]

−

Q̃ · η = −2
√

2 (DmV
m + 2µB)

Q̃ · η̃ = −2i[B,C]

Q̃ · B = −
√

2 η̃

Q̃ · C = 0

Q̃ · Vm = −
√

2ψm ,

(4.7)

the only change in comparison with the transformations on the original �elds (3.7)

being the explicit µ-dependent terms in Q · η̃ and Q̃ · η.
The �eld rede�nition (4.2) takes the action (3.1) to

S(1) =2πτk +
1

e2

∫
d4x Tr

(
−DmBDmC −DmVnDmV n − 1

2
F+

mnF
+mn

+ Dmψn(4χ+mn − δmnη) + Dmψ̃n(4χ−mn − δmnη̃)

− i
8
√

2
((4χ+

mn − δmnη)[4χ
+mn − δmnη, C] + (4χ−mn − δmnη̃)[4χ

−mn − δmnη̃, C])

− i
√

2 ((4χ+
mn − δmnη)[ψ̃

m, V n]− (4χ−mn − δmnη̃)[ψ
m, V n])

+ i
√

2 (ψm[ψm, B] + ψ̃m[ψ̃m, B])− 1
2
[B,C]2 + 2[B, Vm][C, V m]

+ [Vm, Vn][V m, V n] + 4µV mDmB − 2µη̃η − 4µ2B2

)
,

(4.8)

where k is the instanton number

k :=
1

32π2

∫
d4x Tr ∗FmnF

mn . (4.9)

The rede�nitions produce the additional terms proportional to µ and µ2 in the above

action; the explicit x-dependence in the rede�nitions (4.2) drops out from the action,

and hence it is manifestly invariant under the translations. The modi�ed action (4.8) is
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invariant under the standard P,M,D transformations (4.3), (4.4), the modi�ed confor-

mal boosts, K (4.5), and the CBRST transformations (4.7). The generators P,M,D,K

satisfy the SO(5, 1) algebra (2.14). The CBRST transformations square to zero, anti-

commute with each other and commute with these SO(5, 1) symmetries.

The change in the Fmn terms from (3.1) to (4.8) is obtained by decomposing Fmn into

its self-dual and anti self-dual parts, then recasting the topological instanton number

term (with parameter θ) in terms of the modular parameter τ de�ned in (3.19). The

action (4.8) can then be conveniently expressed (using the χ±mn, η and η̃ equations of

motion) as a CBRST exact term (or an anti-CBRST exact term), plus a term depending

only upon τ and the instanton number k:

S(1) = Q ·Ψ(1) + 2πτk = Q̃ · Ψ̃(1) − 2πτ̄k , (4.10)

where

Ψ(1) =
1

e20

∫
d4x Tr

(
1
2
(F+

mn − 2i[Vm, Vn]+)χ+mn −
√

2(D[mVn])
−χ−mn + 1√

2
µBη̃

− 1
2
√

2
V mDmη̃ + 1√

2
B(Dmψ

m + i
√

2 [ψ̃m, V
m]) + i

4
η[B,C]

)
,

(4.11)

and

Ψ̃(1) =
1

e20

∫
d4x Tr

(
− 1

2
(F−

mn − 2i[Vm, Vn]
−)χ−mn −

√
2(D[mVn])

+χ+mn + 1√
2
µBη

− 1
2
√

2
V mDmη − 1√

2
B(Dmψ̃

m − i
√

2 [ψm, V
m])− i

4
η̃[B,C]

)
.

(4.12)

The topological observables will be discussed in section 6.

5. Conserved currents

We have seen that the action for the twisted theory in R4 is CBRST exact (modulo

the instanton number term). We will now discuss the conformal currents of the theory,

and the derivation of the appropriate �at-space energy-momentum tensor.

We begin by calculating the canonical energy-momentum tensor T c

mn, de�ned in

general by

T c

mn := Tr

(∑
Φ

∂nΦ ·Πm(Φ)− δmnL

)
where Πm(Φ) := ∂S/∂(∂mΦ) (5.1)

for an action of the form S =
∫
d4xTr L with Lagrangian L(Φ,DmΦ) and some set of

�elds {Φ}. By construction, this tensor is conserved (on-shell), ∂mT c

mn = 0. Noether's
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theorem implies that for every symmetry of the theory there exists a conserved cur-

rent. For conformal symmetries, these conserved currents are suitable moments of an

improved energy momentum tensor. This tensor is obtained by adding improvement

terms to T c

mn. A discussion of this can be found in [18]. The purpose of the �rst such

improvement term is to symmetrise the energy-momentum tensor. This �rst additional

term is given by ∂pXpmn, where

Xpmn := 1
2

∑
Φ

Tr ((ΣmnΦ) · Πp − (ΣpmΦ) · Πn − (ΣpnΦ) ·Πm) , (5.2)

and Σmn are the usual spin generators. The expression ∂pXpmn is automatically con-

served as a result of the (m ↔ p) antisymmetry in Xpmn, and when added to T c

mn

constructs what is called the Belinfante tensor

TB

mn ≡ T c

mn + ∂pXpmn, (5.3)

which is symmetric and conserved on-shell. Evaluating this object for the twisted

theory (4.8) gives

TB

mn = Tr

(
− 2D(mBDn)C − 2DmVpDnV

p − FmpF
p
n

+ 2Dp[(D(mV
p)Vn) − (D(mVn))V

p] + 4µV(mDn)B

− 8χ+ p
m (D[nψp])

− − 4i
√

2 ([χ+
p(m, Vn)]ψ̃

p + 2χ+ p
m [V[n, ψ̃p]]

−)

− 8χ− p
m (D[nψ̃p])

+ + 4i
√

2 ([χ−p(m, Vn)]ψ
p + 2χ− p

m [V[n, ψp]]
+)

− 2(D(mη)ψn) − i
√

2 [η, V(m]ψ̃n) − 2(D(mη̃)ψ̃n) + i
√

2 [η̃, V(m]ψn)

+ 4i
√

2χ+ p
m [χ+

np, C] + 2i
√

2ψm[ψn, B] + δmnDp(ηψ
p)

+ 4i
√

2χ− p
m [χ−np, C] + 2i

√
2 ψ̃m[ψ̃n, B] + δmnDp(η̃ψ̃

p)− δmnL(1)

)
.

(5.4)

The second improvement term is speci�c for conformally symmetric theories and

requires the calculation of the �eld-virial Vm, de�ned as

Vm ≡ Tr ((δmn∆Φ + Σmn) Φ · Πn) , (5.5)

where ∆Φ is the conformal weight of Φ. It can then be shown that the condition of

special conformal invariance requires that

Vm = ∂nσmn, (5.6)

for some function of the �elds σmn.

For the twisted theory (4.8) this condition is satis�ed, with

σmn =Tr
(−2gmnBC − 2VmVn − δmnV

2 + µ−1(VmDnC − (DnVm)C)

− 2µ−1ψ̃(mψn) + µ−1δmnψ̃pψ
p − µ−1εmnpqψ̃

pψq
)
,

(5.7)
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and hence

Vm = −2B(DmC) + 8µVmB + 2(DnV
n)Vm − 4(D(mVn))V

n − 2ηψm − 2η̃ψ̃m, (5.8)

where we used the twisted conformal weights in this calculation. Next, the prescription

is to take the symmetric object

smn := σ(mn), (5.9)

and use it to construct

Ypqmn = δpqsmn + δmnspq − δpmsqn − δpnsqm − 1
3
(δpqδmn − δpmδqn)sk

k. (5.10)

The second addition to the energy-momentum tensor is then 1
2
∂p∂qYpqmn, which on its

own is both symmetric and conserved. Thus, for �at-space theories with full conformal

invariance, the �nal improved form of the energy-momentum tensor Tmn is given by

Tmn := TB

mn + 1
2
∂p∂qYpqmn. (5.11)

This fully improved energy-momentum tensor Tmn is also traceless, as required in order

to construct conformal currents as the moments Jim = kn
i Tmn, using the usual 15

conformal Killing vectors kn
i (i = 1, ..., 15) in �at space.

For the twisted theory with action (4.8), this second improvement term is explicitly

given by

1
2
∂p∂qYpqmn = Tr

(
(δmnD

2 −D(mDn))[−2
3
BC − 1

6
µ−1(V kDkC − (DkV

k)C) + 2
3
µ−1ψ̃kψk]

+ D2[−VmVn + 1
2
µ−1(V(mDn)C − (D(mVn))C)− µ−1ψ̃(mψn)]

+ δmnD
pDq[−VpVq + 1

2
µ−1(V(pDq)C − (D(pVq))C)− µ−1ψ̃(pψq)]

−DmDp[−VnVp + 1
2
µ−1(V(nDp)C − (D(nVp))C)− µ−1ψ̃(nψp)]

−DnDp[−VmVp + 1
2
µ−1(V(mDp)C − (D(mVp))C)− µ−1ψ̃(mψp)]

)
.

(5.12)

This expression is to be added to the expression in (5.4) to give the �nal traceless,

symmetric, conserved energy-momentum tensor Tmn := TB

mn+ 1
2
∂p∂qYpqmn for the theory

(4.8). This improved energy-momentum tensor Tmn is CBRST exact, with Tmn = Q ·
Gmn for a certain functionGmn of the �elds. This is given by the �at space specialisation

of the result in the next section.

6. Coupling to gravity

We now turn to the formulation of the topological theory on a Riemannian 4-manifold

M with metric gmn, and seek a BRST-invariant action which is invariant under Weyl
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scalings and which reduces to the �at space theory considered in previous sections. The

energy-momentum tensor will be de�ned as usual in terms of the action S by

Tmn =
2√
g

δS

δgmn
. (6.1)

The �rst step to coupling a �at-space gauge invariant theory to a general curved

background is with a minimal prescription of covariantising the action via δmn 7→ gmn,

d4x 7→ √
g d4x and D 7→ ∇ ≡ D+Γ (where D is the gauge covariant derivative and Γ(g)

is the Levi-Civita connection on M). In general, if this is done the resulting energy-

momentum tensor, as de�ned by (6.1), will reduce in �at space to the Belinfante tensor

(5.3). (Note that �elds satisfying a metric-dependent constraint, such as the �elds χ±mn

when de�ned on a curved manifold, will also transform under metric variations (see

[4]).) For conformal theories in �at space one needs to add a second improvement term

in the energy-momentum tensor, giving (5.11). The corresponding curved space theory

must include additional non-minimal terms which reproduce this second improvement

term 1
2
∂p∂qYpqmn in the �at-space case. The extra terms required are

S∂∂Y :=

∫
M

d4x
√
g

(
1
2
Rmns

mn − 1

12
Rsk

k

)
, (6.2)

where Rmn and R are the Ricci tensor and scalar of M while smn is the minimally

coupled version of the expression given by (5.9) and (5.7) in the previous section.

However, in the case of the theory with action (4.8), it turns out that de�ning

such a theory in curved space via minimal coupling and adding the above terms does

not produce a topological conformal �eld theory�for example, the resulting energy-

momentum tensor de�ned by (6.1) is not traceless or CBRST exact in curved space.

One is, however, free to add further curvature dependent terms to this action in order to

obtain if possible a curved space theory which has the required properties and reduces

in �at space to the theory given in Section 4. It does turn out to be possible to �nd such

additional terms, and this curved space conformal topological quantum �eld theory will

now be presented and discussed.

The action for this conformal TQFT is given by

S = Sm.c. + S∂∂Y + SCR + SEuler, (6.3)

where Sm.c. is the minimally-coupled version of the action (4.8), S∂∂Y is the action (6.2)

above, and the other two terms on the right-hand side of (6.3) are given by

SCR = − 1

144µ2e2

∫
M

d4x
√
g TrC2R2 (6.4)

and

SEuler =
π2

e2µ2

∫
M

d4x
√
g e(M) TrC2 (6.5)
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where

e(M) :=
1

32π2

(
WmnpqW

mnpq − 2RmnR
mn + 2

3
R2
)

(6.6)

is the Euler density on M.

The action (6.3) has the following properties:

• S is invariant under nilpotent CBRST transformations Q and Q̃, with {Q, Q̃} = 0.

• S is CBRST and anti-CBRST exact.

• The energy-momentum tensor Tmn arising from S is CBRST and anti-CBRST

exact.

• Tmn is traceless, and the corresponding local Weyl symmetries of S commute with

the CBRST symmetries.

To see these properties, begin by rewriting the action S of (6.3) in the form

S = S(2) + SEuler, (6.7)

with

S(2) =
1

e2

∫
M

d4x
√
gTr

(
−1

2
(−F+

mn + 2i[Vm, Vn]+)2 − 4((∇[mVn])
−)2 −∇mB∇mC

− (∇mV
m + 2µB +

1

12µ
CR)2 +

1

µ
(V m∇nC − ψ̃mψn)(Rmn − 1

3
gmnR)

+∇mψn(4χ+mn − gmnη) +∇mψ̃n(4χ−mn − gmnη̃)− 2µη̃η

− i

8
√

2
((4χ+

mn − gmnη)[4χ
+mn − gmnη, C] + (4χ−mn − gmnη̃)[4χ

−mn − gmnη̃, C])

− i
√

2 ((4χ+
mn − gmnη)[ψ̃

m, V n]− (4χ−mn − gmnη̃)[ψ
m, V n])

+ i
√

2 (ψm[ψm, B] + ψ̃m[ψ̃m, B])− 1
2
[B,C]2 + 2[B, Vm][C, V m]

)
+ 2πτk ,

(6.8)

and SEuler given in (6.5).

The curved space CBRST symmetries of the action (6.7) are given by (∇m is the
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gauge and di�eomorphism covariant derivative)

Q ·Am = 2ψm

Q · ψm =
√

2∇mC

Q · ψ̃m = −2i[Vm, C]

Q · χ+
mn = −F+

mn + 2i[Vm, Vn]
+

Q · χ−mn = 2
√

2 (∇[mVn])
−

Q · η = 2i[B,C]

Q · η̃ = −2
√

2(∇mV
m + 2µB + 1

12µ
CR)

Q ·B =
√

2 η

Q · C = 0

Q · Vm = −
√

2 ψ̃m

Q · gmn = 0

Q̃ ·Am = −2ψ̃m

Q̃ · ψm = −2i[Vm, C]

Q̃ · ψ̃m = −
√

2∇mC

Q̃ · χ+
mn = 2

√
2 (∇[mVn])

+

Q̃ · χ−mn = F−
mn − 2i[Vm, Vn]−

Q̃ · η = −2
√

2(∇mV
m + 2µB + 1

12µ
CR)

Q̃ · η̃ = −2i[B,C]

Q̃ ·B = −
√

2 η̃

Q̃ · C = 0

Q̃ · Vm = −
√

2ψm

Q̃ · gmn = 0 .

(6.9)

The terms S(2) and SEuler are separately invariant. These CBRST transformations

di�er from the minimally-coupled version of the �at-space transformations (4.7) by the

addition of CR terms to Q · η̃ and Q̃ ·η. Since C and the metric gmn are invariant under

Q and Q̃, these terms do not a�ect the calculation of anticommutators of the CBRST

transformations, and indeed one can readily show that Q and Q̃ square to zero and

anti-commute with each other, up to a gauge transformation and using the equations

of motion following from the action (6.3).

The action (6.7) is not only CBRST and anti-CBRST invariant, but is also exact.

To see this, �rst note that S(2) can be written in the CBRST exact forms:

S(2) = Q ·Ψ(2) + 2πτk + on-shell terms

= Q̃ · Ψ̃(2) − 2πτ̄k + on-shell terms,
(6.10)

where

Ψ(2) =
1

e2

∫
M

d4x
√
gTr

(
1
2
(F+

mn − 2i[Vm, Vn]+)χ+mn −
√

2 (∇[mVn])
−χ−mn

+ 1
2
√

2
(∇mV

m + 2µB + 1
12µ
CR)η̃ + 1√

2 µ
V mψn(Rmn − 1

3
gmnR)

+ 1√
2
B(∇mψ

m + i
√

2 [ψ̃m, V
m]) + i

4
η[B,C]

)
(6.11)
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and

Ψ̃(2) =
1

e2

∫
M

d4x
√
gTr

(
−1

2
(F−

mn − 2i[Vm, Vn]−)χ−mn −
√

2 (∇[mVn])
+χ+mn

+ 1
2
√

2
(∇mV

m + 2µB + 1
12µ
CR)η − 1√

2 µ
V mψ̃n(Rmn − 1

3
gmnR)

− 1√
2
B(∇mψ̃

m − i
√

2 [ψm, V
m])− i

4
η̃[B,C]

)
.

(6.12)

Furthermore, locally the Euler density is a total derivative and can be written as the

divergence of some Zm:

e(M) =
1

32π2

(
WmnpqW

mnpq − 2RmnR
mn + 2

3
R2
)

= ∇mZm. (6.13)

It is then easy to see that the Lagrangian LEuler for the action SEuler =
∫

M
d4x

√
gLEuler

is also exact up to derivative terms:

LEuler = QΛ + V = Q̃Λ̃ + V, (6.14)

where

Λ := −
√

2
π2

e2µ2
Zm Tr(Cψm),

Λ̃ :=
√

2
π2

e2µ2
Zm Tr(Cψ̃m),

(6.15)

and

V :=
π2

e2µ2
∇m

(
Zm TrC2

)
. (6.16)

Although Zm is not globally well-de�ned, any two choices of Zm will di�er by a globally

well-de�ned vector �eld, and the change in Zm under a di�eomorphism will be similarly

well-de�ned, so that the ambiguity in the action SEuler will be the sum of a surface term

(which will vanish for compact M or with suitable boundary conditions) and an exact

term (which will not contribute to the functional integral).

The next step is to show exactness of the energy-momentum tensor of the theory

de�ned by the action (6.3), with CBRST symmetries (6.9). First consider the action

S(2) of (6.8) (a similar argument to the following appears in a related context in [19]).

Varying (6.8) with respect to the metric we �nd

δgS
(2) = Q · (δgΨ(2)) + [δg,Q]Ψ(2) + δg{on-shell terms}

= Q ·
(
δgΨ

(2) +
1

2e2
√

2

∫
M

d4x
√
g Tr δg(∇mV

m)η̃

)
+ (on-shell terms).

(6.17)

(The δg{on-shell terms} in the �rst line in (6.17) involve the η̃ and χ± equations of

motion. The metric variations of the χ± equations of motion only generate further
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equations of motion terms. The metric variation of the η̃ equation of motion term

however generates a term which does not vanish on-shell. However, this term combines

with a second term to give the CBRST exact term involving ∇mV
m in the second

line in (6.17). This second term arises from the commutator [δg,Q], which only acts

non-trivially on the η̃ terms in Ψ(2). Alternatively, one can work with the form of the

action given below for which the CBRST transformations are nilpotent o�-shell, and

show that the metric dependence is CBRST exact without using equations of motion.)

Now, writing

δgΨ
(2) +

1

2e2
√

2

∫
M

d4x
√
g Tr δg(∇mV

m)η̃ =
1

2e2

∫
M

d4x
√
g δgmnG(2)

mn, (6.18)

for some G
(2)
mn de�ned by the above relation, it follows that the energy-momentum

tensor derived from the action S(2) is CBRST exact with

T (2)
mn = Q ·G(2)

mn + on-shell terms, (6.19)

with the analogous statements holding for the Z2 related generator Q̃. The other

contribution to the full energy-momentum tensor Tmn of the full action (6.7) comes

from the action (6.5). Since this action is exact (up to the topological term involving

V), and only contains the CBRST inert �elds C, gmn, it follows directly that the metric

variation of this action is also exact. Thus the full energy-momentum tensor derived

from the action (6.3) is CBRST (and anti-CBRST) exact.

The �nal property of the theory de�ned by (6.3) is that the trace of the energy-

momentum tensor vanishes on-shell. A straightforward calculation based upon the

action (6.8) yields the result that the trace of the corresponding energy-momentum

tensor is given by

gmnT (2)
mn = 1

4µ2∇m∇n
(
(Rmn − 1

2
gmnR) Tr(C2)

)
. (6.20)

This is precisely cancelled by the trace of the energy-momentum tensor coming from

the other part (6.5) of the full action. Then, since the theory with action (6.3) has

a traceless energy-momentum tensor on-shell, this action is Weyl invariant under a

combination of local Weyl rescalings of the metric gmn 7→ exp(−2w(x)) gmn and the

action of the Weyl symmetries on the �elds. The latter are given by

δWAm = 0

δWψm = 0

δW ψ̃m = 0

δWχ
+
mn = µ−1(ψ̃[m∇n]w)+

δWχ
−
mn = −µ−1(ψ[m∇n]w)−

δW η = 2wη − µ−1ψ̃m∇mw

δW η̃ = 2wη̃ + µ−1ψm∇mw

δWB = 2wB + µ−1Vm∇mw

δWC = 0

δWVm = −1
2
µ−1C∇mw .

(6.21)

These curved-space Weyl transformations contain non-conventional 1/µ terms, as one

would expect from the presence of such terms in the �at-space conformal transforma-

tions. These Weyl symmetries δW commute with the CBRST transformations Q and

Q̃.
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On-shell conditions appearing in the curved space formulation in this section can

be lifted by writing o�-shell formulations using auxiliary �elds, just as in the SO(4)

twisted theory (see [17]). The auxiliary �elds required may be denoted P,N±
mn. The Z2

symmetry acts on these as P → −P,N±
mn → −N∓

mn. The o�-shell form of the action

(6.8) is

S(2) =
1

e2

∫
M

d4x
√
gTr

(
1

2
N+

mn

(
Nmn + 2Fmn − 4i[V m, V n]

)
+

1

2
N−

mn

(
Nmn − 4

√
2∇[mV n]

)
+

1

8
P
(
P + 4

√
2(∇mV

m + 2µB +
1

12µ
CR)

)
+

1

µ
(V m∇nC − ψ̃mψn)(Rmn − 1

3
gmnR)−∇mB∇mC

+∇mψn(4χ+mn − gmnη) +∇mψ̃n(4χ−mn − gmnη̃)− 2µη̃η

− i

8
√

2
((4χ+

mn − gmnη)[4χ
+mn − gmnη, C] + (4χ−mn − gmnη̃)[4χ

−mn − gmnη̃, C])

− i
√

2 ((4χ+
mn − gmnη)[ψ̃

m, V n]− (4χ−mn − gmnη̃)[ψ
m, V n])

+ i
√

2 (ψm[ψm, B] + ψ̃m[ψ̃m, B])− 1
2
[B,C]2 + 2[B, Vm][C, V m]

)
+ 2πτk .

(6.22)

The o�-shell CBRST symmetries are given by

Q · Am = 2ψm

Q · ψm =
√

2∇mC

Q · ψ̃m = −2i[Vm, C]

Q · χ±mn = N±
mn

Q ·N±
mn = 2i

√
2[χ±mn, C]

Q · η = 2i[B,C]

Q · η̃ = P

Q · P = 2i
√

2[η̃, C]

Q · B =
√

2 η

Q · C = 0

Q · Vm = −
√

2 ψ̃m

Q · gmn = 0

Q̃ ·Am = −2ψ̃m

Q̃ · ψm = −2i[Vm, C]

Q̃ · ψ̃m = −
√

2∇mC

Q̃ · χ+
mn = N±

mn

Q̃ ·N±
mn = 2i

√
2[χ±mn, C]

Q̃ · η = P

Q̃ · η̃ = −2i[B,C]

Q̃ · P = 2i
√

2[η, C]

Q̃ ·B = −
√

2 η̃

Q̃ · C = 0

Q̃ · Vm = −
√

2ψm

Q̃ · gmn = 0 .

(6.23)

Then in this formulation with these auxiliary �elds Q2 = Q̃2 = 0 up to a gauge trans-

formation with parameter 2
√

2iC and {Q, Q̃} = 0, without use of �eld equations. With

these modi�cations, the action is given by the sum of the topological term 2πτk plus an

exact piece, without needing to use �eld equations, and the metric variation of the ac-

tion is also exact o�-shell. However, the energy momentum tensor is still only traceless

on-shell.
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Turning to the construction of observables for the conformal TQFT with action

(6.3), we �rst need suitable operators O. The functionals studied in [9] are also suitable

here, and the following gauge invariant, CBRST closed (but not exact) expressions arise:

O0 =

∫
γ0

TrC2

O1 =

∫
γ1

√
2 Tr (C ∧ ψ)

O2 =

∫
γ2

1
2
Tr
(
ψ ∧ ψ + 1

2
√

2
C ∧ F

)

O3 =

∫
γ3

1
4
Tr (ψ ∧ F )

O4 =

∫
γ4

1
32

Tr (F ∧ F ) ,

(6.24)

together with a Z2 related set of observables corresponding to the cohomology of Q̃.

The γs, s = 0, ..., 4 are homology cycles on M (γ0 is a point). The operators Ok and

their anti-CBRST analogues satisfy the descent equations given in [9]. The integrands

in (6.24) are also invariant under the local scale transformations (6.21). Note that the

integrands in any of these observables could be multiplied by any scalar function of

the curvature and its derivatives, such as e(M), and would remain CBRST closed but

not exact. However, these would only be Weyl-invariant for special combinations of

curvatures, such as the square of the Weyl tensor.

7. Theta Angle and S-Duality

The Lorentzian theory has a real theta-term in the action

Sr = − θ

32π2

∫
TrF ∧ F (7.1)

which is Wick rotated to an imaginary term

Si = −i θ

32π2

∫
TrF ∧ F (7.2)

in the Euclideanised action. As usual, the parameter θ must be an angle, periodically

identi�ed, if the Euclideanised path integral is to be single-valued, and the presence

of the parameter θ leads to theta-vacua instead of the naive vacuum. However, the

Euclidean theory is written down directly in Euclidean space, and need have nothing to

do with any Wick rotation. In particular, if it is not required to be the Euclideanisation

of a real Lorentzian action, there is no reason why the theta-term has to be imaginary,

and one could instead write down a real theta-term (7.1) in Euclidean space. Indeed,
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it is natural to have a real action, and this also follows from reduction from 9+1

dimensions [20]. To see this, consider including a term

S =

∫
C ∧ Tr(F ∧ F ) (7.3)

in the 9+1 dimensional Yang-Mills action, where C is a background 6-form. Such terms

arise for example in considering D5-D9 brane systems. Then reducing on a Euclidean

6-torus gives, among other terms, the real theta-term (7.1) in 3+1 dimensions, while

reducing on �ve space and one time dimension again gives a real theta-term, but this

time in Euclidean space. If theta is real in Euclidean space, there is no reason to require

theta to be an angle.

In the Lorentzian or the Euclideanised theory, the angle theta can be combined

with the coupling constant e into a complex variable τ which parameterises the coset

SL(2,R)/ SO(2). In the Euclidean theory, on the other hand, a real theta term leads to

coupling constants parameterising SL(2,R)/ SO(1, 1). As will be discussed in the next

section, this is the coset structure required by holography, and so the holographic dual

should be one in which the theta-term is real, not imaginary.

In the Euclidean theory, there are then two choices of action, one with real theta-

term and one with an imaginary one. The imaginary one is the one that is convention-

ally used in topological �eld theory and is naturally associated with a real Lorentzian

action. The action with a real theta is the one that is natural from reduction from 9+1

dimensions, and is also the one that is required for holography�the holographic dual

of the IIB∗ theory in de Sitter space is a Euclidean super-Yang-Mills theory with a real

theta-term. The formulae in this paper have all been written for the imaginary case,

but it is straightforward to obtain the real case by taking θ → iθ throughout.

The Lorentzian Yang-Mills theory has a classical SL(2,R) symmetry broken to a

discrete SL(2,Z) S-duality symmetry in the quantum theory. The Euclidean and Eu-

clideanised theories also have a classical SL(2,R) symmetry. This can be seen by

considering the Yang-Mills theory from a dimensional reduction from a 6 dimensional

theory, which could be 6-dimensional (1,1) supersymmetric Yang-Mills, or the (2,0)

supersymmetric tensor multiplet theory. The Lorentzian and Euclidean theories can

be obtained by reducing from 5+1 dimensions on a Euclidean or a Lorentzian 2-torus,

respectively. Wick rotating 5+1 dimensional (1,1) supersymmetric Yang-Mills to a

Euclideanised theory in 6 dimensions and then reducing on a 2-torus yields the Eu-

clideanised four-dimensional gauge theory. In each case, there is a reduction on a

2-torus and so there is an SL(2,Z) symmetry of the reduced theory resulting from the

large di�eomorphisms on the 2-torus. On truncating to the massless Yang-Mills sector

in 4 dimensions, the SL(2,Z) is enhanced to an SL(2,R) classical symmetry. In the

Euclideanised or Lorentzian theories, this is then broken to the subgroup SL(2,Z) pre-

serving the periodic identi�cation of the angle θ. It is natural to conjecture that all

three theories in fact have a SL(2,Z) S-duality symmetry in the full quantum theory,

and moreover that the twisted theory also has an S-duality symmetry.
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8. Topological holography

The Lorentzian N=4 supersymmetric Yang�Mills theory has a dual holographic descrip-

tion as IIB string theory on AdS5×S5 [3], with the anti-de Sitter space formulation

giving a dual description of the Yang-Mills theory at large 't Hooft coupling. Wick-

rotating this dual pair, the Euclideanised N=4 Yang�Mills theory has a holographic

formulation onH5×S5, the Euclidean version of AdS5×S5 with the anti-de Sitter space

continued to the hyperbolic space H5 [21, 1]. It was argued in [1] that the holographic

dual of the Euclidean N=4 supersymmetric Yang�Mills theory is the IIB∗ string theory
on dS5×H5, where dS5 is �ve dimensional de Sitter space, with the Euclidean confor-

mal group SO(5, 1) arising as the de Sitter group, and the R-symmetry group arising

from the isometries of H5. These three dualities arise from considering D3-branes,

Wick-rotated D3-branes (i.e., instantonic D-branes) and the Euclidean E4-branes of

[1], respectively. Whereas the D3-branes are timelike 4-surfaces in 9+1 dimensions

with a Lorentzian super Yang-Mills world-volume theory, the E4-branes are spacelike

4-surfaces in 9+1 dimensions with a Euclidean super Yang-Mills world-volume theory.

The Euclidean supersymmetric Yang�Mills theory can be twisted in four ways, the

A,B and half-twisted models, and the new conformal twisting presented here. It is

natural to ask whether these twisted models could still have a holographic description

in de Sitter space, or more generally what the dual description of each theory should be

at large 't Hooft coupling. One motivation is that the de Sitter formulation could give

a useful alternative way of calculating topological invariants. As the 5-dimensional

de Sitter symmetry is associated with the conformal symmetry in 4-dimensions, the

most promising theory to consider in this context is the conformal twisting, as this is

a conformal �eld theory. In [1], it was proposed that this conformal twisting should

indeed have a holographic dual, with correlation functions in the Euclidean conformal

�eld theory associated with the partition function of a theory in 5-dimensional de Sitter

space.

If J is some composite operator in the Yang-Mills theory, then introducing a source

term
∫
φ(x) ·J with local source φ(x), which can be thought of as a position-dependent

coupling `constant', then
〈
exp(− ∫ φ · J)

〉
is the generating functional for correlation

functions 〈J(x1)....J(xn)〉. This in turn is related, according to the holography con-

jecture, to the bulk partition function subject to boundary conditions in which the

boundary values of certain bulk �elds are given by φ(x), and for many purposes it is

useful to think of the Yang-Mills theory as living on that boundary. In the Lorentzian

case, the boundary is the boundary of AdS5, and in the Euclideanised theory it is the

boundary of H5. For the Euclidean case, the situation is more subtle.

The scalar �elds in the Euclidean Yang-Mills theory take values in the Lorentzian

space R5,1 and the expectation value of the scalars is a vector in R5,1 which can be

spacelike or timelike (or null), and these correspond to di�erent sectors of the theory.

This corresponds to whether the separation between the E4-branes that is kept con-

stant in the Maldacena-type limit is spacelike or timelike (or null). For the spacelike
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separation, the arguments of [1] give a holographic duality between the IIB∗ theory on

dS5×H5 and a Euclidean Yang-Mills theory that lives on the boundary of H5, while for

the timelike separation, the gauge theory lives on a boundary of de Sitter space. This

means that the boundary conditions on the boundaries of dS5 or H5 are re�ected in

di�erent sectors of the Euclidean conformal �eld theory [1], a phenomenon that occurs

in other examples of holography in which the bulk space is a product of two factors,

both of which have a boundary [2, 22].

An important role is played by those operators J which lie in the superconformal

current multiplet, the multiplet of the conformal supersymmetry consisting of the the

energy-momentum tensor Tmn and its superpartners. These couple to �elds φ(x) which

lie in the N=4 conformal supergravity multiplet, consisting of a background metric gmn

coupling to Tmn, and its superpartners. In the Lorentzian case, this is the standard

N=4 conformal supergravity multiplet of [23], and one-loop quantum corrections induce

the conformal supergravity action [24, 25]. The �elds in the superconformal gravity

multiplet provide the boundary conditions for the bulk �elds in the 5-dimensional

gauged supergravity multiplet. Euclideanising gives a similar picture, involving the

Euclideanised conformal gravity and a Euclideanised gauged supergravity on H5.

For the Euclidean case, the situation is again similar, with a conformal supergravity

multiplet in 4 Euclidean dimensions playing a central role. This conformal supergravity

arises from dimensional reduction. There is a conformal supergravity in 9+1 dimen-

sions, and reducing on a spatial 6-torus gives the N=4 conformal supergravity in 3+1

dimensions [23], while reducing on 5 space and one time dimension in a similar man-

ner gives a N=4 conformal supergravity in 4 Euclidean dimensions, with gauge group

SO(5, 1) instead of SO(6). Again, a conformal supergravity action is induced by one-

loop corrections. In one sector of the theory, the natural e�ective supergravity theory

consists of �elds in dS5 which are independent of the H5 coordinates, and in the other

sector it consists of �elds in H5 which are independent of the dS5 coordinates, The

gauged supergravity theory in de Sitter space that arises here [1, 22] has gauge group

SO(5, 1) and a twisted supersymmetry, and the boundary conditions for these �elds

are provided by the conformal supergravity �elds on the de Sitter boundary. Similarly,

there is an SO(5, 1) gauged supergravity on the Euclidean space H5 arising from reduc-

ing the IIB∗ theory on dS5, and the boundary conditions for these �elds are provided

by conformal supergravity �elds on the boundary of H5. Both the IIB∗ theory and the

four-dimensional Euclidean conformal supergravity have a pair of scalar �elds taking

values in SL(2,R)/ SO(1, 1) instead of the usual SL(2,R)/ SO(2). The boundary values

of these scalars give rise to the coupling constant and theta parameter in the dual

Yang-Mills theory, with the consequence that the theta-term is real, not imaginary, in

this case.

We now turn to the question of �nding the holographic dual for the twisted gauge

theory discussed here. The Euclidean Yang-Mills theory has a current supermultiplet

Tmn, RmA, ... where RmA is the supercurrent. The twisting and �eld rede�nitions dis-
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cussed here then leads to a current multiplet Tmn, Rm, R̃m, ... for the twisted theory,

where Rm, R̃m are BRST currents. The �elds gmn, ψm, ψ̃m, ... coupling to this cur-

rent multiplet then de�ne a twisted form of the superconformal gravity multiplet, with

ψm, ψ̃m gauge �elds for local BRST transformations. These should give the boundary

conditions for a 5-dimensional gravity theory in dS5 or H
5, with �elds gMN , ψM , ψ̃M , ...

and it is straightforward to read o� at least the �eld content and linearised theory

from the structure of the conformal gravity multiplet, as in [24, 25]. This then should

constitute the supergravity limit of the holographic dual of the topological conformal

�eld theory. In particular, it is a theory with local BRST symmetries. For any bosonic

background, and in particular for any manifold, a rigid BRST transformation with

constant parameter will be a symmetry�the analogue of the Killing spinor conditions

are trivially satis�ed�and that rigid BRST symmetry can be used to de�ne a BRST

cohomology, giving a gravity theory which is a topological �eld theory. We will give

further details of this construction elsewhere.
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