Epidemiology of multi drug resistant gram negative bacteria in Kathmandu, Nepal

G. Maki, L. Kaljee, T. Prentiss, E. Olson, D. Bajracharya, B. Shrestha, K. Karki, M. Shakya, R.D. Joshi, E. Herc, H. Hadid, M. Zervos
2019 International Journal of Infectious Diseases  
Large amounts of antibiotics used for human therapy has resulted in the selection of pathogenic bacteria resistant to multiple antimicrobial drugs. This has created problems in the treatment of patients. So, this study was carried out to determine multidrug resistant (MDR) bacterial pathogens and their antibiogram in patients with clinically suspected pneumonia attending a tertiary care centre in central Nepal. Specimens representing lower respiratory tract were processed using standard
more » ... . Antibiotic susceptibility test was performed on bacterial pathogens by Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Fifty-four percent of the total bacterial isolates were MDR. Multidrug resistance was found in Klebsiella pneumoniae (23.4%), Pseudomonads (20.5%), Acinetobacter calcoaceticus baumannii complex (20.6%), Escherichia coli (11.6%), Staphylococcus aureus (9.1%) and others. Non-fermentative bacteria were more multidrug resistant (MDR) than Enterobacteriaceae (77.8% vs. 68.9%) whereas extended-spectrum beta-lactamase (ESBL) was considerably higher among Enterobacteriaceae (37.27% vs. 10.46%). Resistance was seen even against carbapenems. Only polymyxins were effective against multidrug resistant gram-negative bacterial isolates. This study shows an emergence of MDR bacterial pathogens at an alarmingly high level as the isolates were resistant to almost all antibiotics commonly used in our set-up. There must be prudent use of antibiotics to prevent the emergence of MDR bacterial isolates.
doi:10.1016/j.ijid.2018.11.121 fatcat:ubhc36mh75gh3pqkjl6tgioviu