Characteristics of Co-Seismic Surface Rupture of the 2021 Maduo Mw 7.4 Earthquake and Its Tectonic Implications for Northern Qinghai–Tibet Plateau

Hong Xie, Zhimin Li, Daoyang Yuan, Xianyan Wang, Qi Su, Xin Li, Aiguo Wang, Peng Su
2022 Remote Sensing  
A magnitude (Mw) 7.4 Maduo earthquake occurred on 22 May 2021 in the northern Qinghai-Tibet Plateau, with predominantly left-lateral strike-slip faulting and a component of normal faulting within the Bayan Har Block. The co-seismic surface rupture extended in a NWW direction for ~160 km with a complicated geometry along a poorly known young fault: the Jiangcuo Fault. The main surface rupture propagated bilaterally from the epicenter and terminated eastward in horsetail splays. The main rupture
more » ... an be divided into five segments with two rupture gaps. Field surveys and detailed mapping revealed that the co-seismic surface ruptures were characterized by a series of left-lateral offsets, en echelon tensional cracks and fissures, compressional mole tracks, and widespread sand liquefication. The observed co-seismic left-lateral displacements ranged from 0.2 m to ~2.6 m, while the vertical displacements ranged from 0.1 m to ~1.5 m, much lower than the InSAR inverse slip maximum of 2–6 m. Based on the comprehensive analysis of the causative fault geometry and the tectonic structure of the northern Bayan Har Block, this study suggests that the multiple NWW trending sub-faults, including the Jiangcuo Fault, developed from the East Kunlun fault northeast of the Bayan Har Block could be regarded as the sub-faults of the East Kunlun Fault system, constituting a broad and dispersive northern boundary of the Block, controlling the inner strain distribution and deformation.
doi:10.3390/rs14174154 fatcat:73mud2zxczfpnkz6l73gz5cvmu