A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit <a rel="external noopener" href="https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/490430/1-s2.0-S2666389921000957-main.pdf;jsessionid=6BCD6A7FF090C147648DB5D8C6CFD7E8?sequence=3">the original URL</a>. The file type is <code>application/pdf</code>.
On the Role of Artificial Intelligence in Medical Imaging of COVID-19
<span title="2021-04-30">2021</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/5cekcl3stvfxxfsctgk6zwoqwe" style="color: black;">Patterns</a>
</i>
Although a plethora of research articles on AI methods on COVID-19 medical imaging are published, their clinical value remains unclear. We conducted the largest systematic review of the literature addressing the utility of AI in imaging for COVID-19 patient care. By keyword searches on PubMed and preprint servers throughout 2020, we identified 463 manuscripts and performed a systematic meta-analysis to assess their technical merit and clinical relevance. Our analysis evidences a significant
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.patter.2021.100269">doi:10.1016/j.patter.2021.100269</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33969323">pmid:33969323</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8086827/">pmcid:PMC8086827</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/p4xslz325ja55pmznupkcg7h5u">fatcat:p4xslz325ja55pmznupkcg7h5u</a>
</span>
more »
... arity between clinical and AI communities, both in the focus on imaging modalities (AI experts neglected CT and Ultrasound, favoring X-Ray) and performed tasks (71.9% of AI papers centered on diagnosis). The vast majority of manuscripts were found deficient regarding potential use in clinical practice, but 2.7% (N=12) publications were assigned a high maturity level and are summarized in greater detail. We provide an itemized discussion of the challenges in developing clinically relevant AI solutions with recommendations and remedies.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210801182623/https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/490430/1-s2.0-S2666389921000957-main.pdf;jsessionid=6BCD6A7FF090C147648DB5D8C6CFD7E8?sequence=3" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/03/91/039123ed2842d1c99869d99dfdba7137ebaa49e9.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.patter.2021.100269">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
elsevier.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086827" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>