A Statistical Comparative Planetology Approach to Maximize the Scientific Return of Future Exoplanet Characterization Efforts [article]

Jade H. Checlair, Dorian S. Abbot, Robert J. Webber, Y. Katherina Feng, Jacob L. Bean, Edward W. Schwieterman, Christopher C. Stark, Tyler D. Robinson, Eliza Kempton, Olivia D. N. Alcabes, Daniel Apai, Giada Arney, Nicolas Cowan (+27 others)
2019 arXiv   pre-print
Provided that sufficient resources are deployed, we can look forward to an extraordinary future in which we will characterize potentially habitable planets. Until now, we have had to base interpretations of observations on habitability hypotheses that have remained untested. To test these theories observationally, we propose a statistical comparative planetology approach to questions of planetary habitability. The key objective of this approach will be to make quick and cheap measurements of
more » ... tical planetary characteristics on a large sample of exoplanets, exploiting statistical marginalization to answer broad habitability questions. This relaxes the requirement of obtaining multiple types of data for a given planet, as it allows us to test a given hypothesis from only one type of measurement using the power of an ensemble. This approach contrasts with a "systems science" approach, where a few planets would be extensively studied with many types of measurements. A systems science approach is associated with a number of difficulties which may limit overall scientific return, including: the limited spectral coverage and noise of instruments, the diversity of exoplanets, and the extensive list of potential false negatives and false positives. A statistical approach could also be complementary to a systems science framework by providing context to interpret extensive measurements on planets of particular interest. We strongly recommend future missions with a focus on exoplanet characterization, and with the capability to study large numbers of planets in a homogenous way, rather than exclusively small, intense studies directed at a small sample of planets.
arXiv:1903.05211v1 fatcat:c4vndp3qivh2vfrkf2bjbufiti