mgsohrab at WNUT 2020 Shared Task-1: Neural Exhaustive Approach for Entity and Relation Recognition Over Wet Lab Protocols

Mohammad Golam Sohrab, Anh-Khoa Duong Nguyen, Makoto Miwa, Hiroya Takamura
2020 Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)   unpublished
We present a neural exhaustive approach that addresses named entity recognition (NER) and relation recognition (RE), for the entity and relation recognition over the wet-lab protocols shared task. We introduce BERT-based neural exhaustive approach that enumerates all possible spans as potential entity mentions and classifies them into entity types or no entity with deep neural networks to address NER. To solve relation extraction task, based on the NER predictions or given gold mentions we
more » ... e all possible trigger-argument pairs and classify them into relation types or no relation. In NER task, we achieved 76.60% in terms of F-score as third rank system among the participated systems. In relation extraction task, we achieved 80.46% in terms of F-score as the top system in the relation extraction or recognition task. Besides we compare our model based on the wet lab protocols corpus (WLPC) with the WLPC baseline and dynamic graph-based information extraction (DyGIE) systems.
doi:10.18653/v1/2020.wnut-1.38 fatcat:icqpsm2oyngqlnmnynwqq5a6qa