A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
An Inconsistency
2020
Zenodo
This paper proves an inconsistency in the Peano arithmetic (PA). We show that for a strengthened form of the strong Goldbach conjecture and its negation, assuming either statement implies that we have a proof of that statement. In other words, the paper actually does not solve the conjecture, but it proves that it does. This contradiction is the consequence of two properties of a specific set which we use to reformulate the conjecture.
doi:10.5281/zenodo.6946242
fatcat:ppbf6ky3djbbti6zpbkhglgfme