Seismic sparse-layer reflectivity inversion using basis pursuit decomposition

Rui Zhang, John Castagna
2011 Geophysics  
A basis pursuit inversion of seismic reflection data for reflection coefficients is introduced as an alternative method of incorporating a priori information in the seismic inversion process. The inversion is accomplished by building a dictionary of functions representing reflectivity patterns and constituting the seismic trace as a superposition of these patterns. Basis pursuit decomposition finds a sparse number of reflection responses that sum to form the seismic trace. When the dictionary
more » ... en the dictionary of functions is chosen to be a wedge-model of reflection coefficient pairs convolved with the seismic wavelet, the resulting reflectivity inversion is a sparse-layer inversion, rather than a sparse-spike inversion. Synthetic tests suggest that a sparse-layer inversion using basis pursuit can better resolve thin beds than a comparable sparse-spike inversion. Application to field data indicates that sparse-layer inversion results in the potentially improved detectability and resolution of some thin layers and reveals apparent stratigraphic features that are not readily seen on conventional seismic sections.
doi:10.1190/geo2011-0103.1 fatcat:lfkp4yefu5g65pbnzj7jeinrjm