Building Large-Scale Quantitative Imaging Databases with Multi-Scale Deep Reinforcement Learning: Initial Experience with Whole-Body Organ Volumetric Analyses

David J. Winkel, Hanns-Christian Breit, Thomas J. Weikert, Bram Stieltjes
2021 Journal of digital imaging  
AbstractTo explore the feasibility of a fully automated workflow for whole-body volumetric analyses based on deep reinforcement learning (DRL) and to investigate the influence of contrast-phase (CP) and slice thickness (ST) on the calculated organ volume. This retrospective study included 431 multiphasic CT datasets—including three CP and two ST reconstructions for abdominal organs—totaling 10,508 organ volumes (10,344 abdominal organ volumes: liver, spleen, and kidneys, 164 lung volumes).
more » ... lung volumes). Whole-body organ volumes were determined using multi-scale DRL for 3D anatomical landmark detection and 3D organ segmentation. Total processing time for all volumes and mean calculation time per case were recorded. Repeated measures analyses of variance (ANOVA) were conducted to test for robustness considering CP and ST. The algorithm calculated organ volumes for the liver, spleen, and right and left kidney (mean volumes in milliliter (interquartile range), portal venous CP, 5 mm ST: 1868.6 (1426.9, 2157.8), 350.19 (45.46, 395.26), 186.30 (147.05, 214.99) and 181.91 (143.22, 210.35), respectively), and for the right and left lung (2363.1 (1746.3, 2851.3) and 1950.9 (1335.2, 2414.2)). We found no statistically significant effects of the variable contrast phase or the variable slice thickness on the organ volumes. Mean computational time per case was 10 seconds. The evaluated approach, using state-of-the art DRL, enables a fast processing of substantial amounts irrespective of CP and ST, allowing building up organ-specific volumetric databases. The thus derived volumes may serve as reference for quantitative imaging follow-up.
doi:10.1007/s10278-020-00398-y pmid:33469724 fatcat:yz3kb2sqt5h5tcwf6ed3pm6e3m