InSight: An FPGA-Based Neuromorphic Computing System for Deep Neural Networks

Taeyang Hong, Yongshin Kang, Jaeyong Chung
2020 Journal of Low Power Electronics and Applications  
Deep neural networks have demonstrated impressive results in various cognitive tasks such as object detection and image classification. This paper describes a neuromorphic computing system that is designed from the ground up for energy-efficient evaluation of deep neural networks. The computing system consists of a non-conventional compiler, a neuromorphic hardware architecture, and a space-efficient microarchitecture that leverages existing integrated circuit design methodologies. The compiler
more » ... takes a trained, feedforward network as input, compresses the weights linearly, and generates a time delay neural network reducing the number of connections significantly. The connections and units in the simplified network are mapped to silicon synapses and neurons. We demonstrate an implementation of the neuromorphic computing system based on a field-programmable gate array that performs image classification on the hand-wirtten 0 to 9 digits MNIST dataset with 99.37% accuracy consuming only 93uJ per image. For image classification on the colour images in 10 classes CIFAR-10 dataset, it achieves 83.43% accuracy at more than 11× higher energy-efficiency compared to a recent field-programmable gate array (FPGA)-based accelerator.
doi:10.3390/jlpea10040036 fatcat:qgl2htptxrfdpoyuufsnqm6obq