An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

Jérémie Cabessa, Alessandro E. P. Villa, Sergio Gómez
<span title="2014-04-11">2014</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of v-automata, and then translating the most refined classification of v-automata to the Boolean neural network context. As a
more &raquo; ... sult, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0094204">doi:10.1371/journal.pone.0094204</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/24727866">pmid:24727866</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3984152/">pmcid:PMC3984152</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/hfapzjg6qzav5pvch6u5j5crkq">fatcat:hfapzjg6qzav5pvch6u5j5crkq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191103151036/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC3984152&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ad/2e/ad2e8e2f6532e03edc17958ff24a71390a5dc5cc.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0094204"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984152" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>