Fractal fits to Riemann zeros

P B Slater
2007 Canadian journal of physics (Print)  
Wu and Sprung (Phys. Rev. E 48, 2595 (1993)) reproduced the first 500 nontrivial Riemann zeros, using a one-dimensional local potential model. They concluded -- and similarly van Zyl and Hutchinson (Phys. Rev. E 67, 066211 (2003)) -- that the potential possesses a fractal structure of dimension d=3/2. We model the nonsmooth fluctuating part of the potential by the alternating-sign sine series fractal of Berry and Lewis A(x,g). Setting d=3/2, we estimate the frequency parameter (gamma), plus an
more » ... r (gamma), plus an overall scaling parameter (sigma) we introduce. We search for that pair of parameters (gamma,sigma) which minimizes the least-squares fit S_{n}(gamma,sigma) of the lowest n eigenvalues -- obtained by solving the one-dimensional stationary (non-fractal) Schrodinger equation with the trial potential (smooth plus nonsmooth parts) -- to the lowest n Riemann zeros for n =25. For the additional cases we study, n=50 and 75, we simply set sigma=1. The fits obtained are compared to those gotten by using just the smooth part of the Wu-Sprung potential without any fractal supplementation. Some limited improvement -- 5.7261 vs. 6.39207 (n=25), 11.2672 vs. 11.7002 (n=50) and 16.3119 vs. 16.6809 (n=75) -- is found in our (non-optimized, computationally-bound) search procedures. The improvements are relatively strong in the vicinities of gamma=3 and (its square) 9. Further, we extend the Wu-Sprung semiclassical framework to include higher-order corrections from the Riemann-von Mangoldt formula (beyond the leading, dominant term) into the smooth potential.
doi:10.1139/p07-050 fatcat:x3xiqewfwnagvmt2n5x44c6zkq