A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Extensions of dissipative operators with closable imaginary part
2021
Opuscula Mathematica
Given a dissipative operator \(A\) on a complex Hilbert space \(\mathcal{H}\) such that the quadratic form \(f \mapsto \text{Im}\langle f, Af \rangle\) is closable, we give a necessary and sufficient condition for an extension of \(A\) to still be dissipative. As applications, we describe all maximally accretive extensions of strictly positive symmetric operators and all maximally dissipative extensions of a highly singular first-order operator on the interval.
doi:10.7494/opmath.2021.41.3.381
fatcat:rccctek6z5e47pyj5y5eoogz7e