A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
A Resource Constrained Neural Network for the Design of Embedded Human Posture Recognition Systems
2021
Applied Sciences
A custom HW design of a Fully Convolutional Neural Network (FCN) is presented in this paper to implement an embeddable Human Posture Recognition (HPR) system capable of very high accuracy both for laying and sitting posture recognition. The FCN exploits a new base-2 quantization scheme for weight and binarized activations to meet the optimal trade-off between low power dissipation, a very reduced set of instantiated physical resources and state-of-the-art accuracy to classify human postures. By
doi:10.3390/app11114752
fatcat:qldbfsqfqjhf7cmwo7yzcrif3m