Modifiable Stability and Maneuverability of High Speed Unmanned Underwater Vehicles (UUVs) Through Bioinspired Control Fins [book]

Nastasia E. Winey
2020 unpublished
Underwater Vehicles generally have control fins located only near their aft end, for making controllable changes in directions. This design allows for stability of control; however, the turns are typically large in comparison to the vehicle body length. Some bony fish, such as tuna, on the other hand, have deployable ventral and dorsal fins located towards the front of their body, in addition to their other fins. Their deployable fins allow them to modulate their hydrodynamic behavior in
more » ... e to their environment. Tunas keep these fins retracted during steady cruising, and then deploy them during rapid maneuvers. However, the details of these hydrodynamic effects are not well understood. To investigate this phenomena, using a REMUS 100 as a model, a pair of vertical fins was added at different hull positions, to investigate the effects of fin location on the horizontal plane hydrodynamics, through: stability parameters, nonlinear simulation, and towing tank experiments. Depending on the added fin location, the stability of the vehicle changed, thereby affecting the maneuverability. As fins were placed further forward on the vehicle, maneuverability increased, with effects tapering off at 0.2 BL ahead of the vehicle's center of buoyancy. This investigation explored how rigid underwater vehicles could benefit from added fins, without drastically changing the design of current vehicles.
doi:10.1575/1912/26053 fatcat:yr4arqld2fblxaehkueof6vkqu