Personalized Context-Aware Point of Interest Recommendation [article]

Mohammad Aliannejadi, Fabio Crestani
2018 arXiv   pre-print
Personalized recommendation of Points of Interest (POIs) plays a key role in satisfying users on Location-Based Social Networks (LBSNs). In this paper, we propose a probabilistic model to find the mapping between user-annotated tags and locations' taste keywords. Furthermore, we introduce a dataset on locations' contextual appropriateness and demonstrate its usefulness in predicting the contextual relevance of locations. We investigate four approaches to use our proposed mapping for addressing
more » ... he data sparsity problem: one model to reduce the dimensionality of location taste keywords and three models to predict user tags for a new location. Moreover, we present different scores calculated from multiple LBSNs and show how we incorporate new information from the mapping into a POI recommendation approach. Then, the computed scores are integrated using learning to rank techniques. The experiments on two TREC datasets show the effectiveness of our approach, beating state-of-the-art methods.
arXiv:1806.05736v1 fatcat:lblylvjqpbh2vlppf55s5alssi