Inverse Kinematics Solution for Robot Manipulator based on Neural Network under Joint Subspace

Yin Feng, Wang Yao-nan, Yang Yi-min
<span title="2014-09-18">2014</span> <i title="Agora University of Oradea"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/do4a7az725gcpbh4iwwih3j7aa" style="color: black;">International Journal of Computers Communications &amp; Control</a> </i> &nbsp;
Neural networks with their inherent learning ability have been widely applied to solve the robot manipulator inverse kinematics problems. However, there are still two open problems: (1) without knowing inverse kinematic expressions, these solutions have the difficulty of how to collect training sets, and (2) the gradient-based learning algorithms can cause a very slow training process, especially for a complex configuration, or a large set of training data. Unlike these traditional
more &raquo; ... ns, the proposed metho trains neural network in joint subspace which can be easily calculated with electromagnetism-like method. The kinematics equation and its inverse are one-to-one mapping within the subspace. Thus the constrained training sets can be easily collected by forward kinematics relations. For issue 2, this paper uses a novel learning algorithm called extreme learning machine (ELM) which randomly choose the input weights and analytically determines the output weights of the single hidden layer feedforward neural networks (SLFNs). In theory, this algorithm tends to provide the best generalization performance at extremely fast learning speed. The results show that the proposed approach has not only greatly reduced the computation time but also improved the precision.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.15837/ijccc.2012.3.1387">doi:10.15837/ijccc.2012.3.1387</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/klre7ctdqrcqbauyvsspkdlp4i">fatcat:klre7ctdqrcqbauyvsspkdlp4i</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170524141609/http://univagora.ro:80/jour/index.php/ijccc/article/download/1387/366" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/34/76/3476251961aa29233801035c9f44f87735b03971.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.15837/ijccc.2012.3.1387"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>