Poincaré duality algebras mod two

Larry Smith, R.E. Stong
<span title="">2010</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/37jjomjmvfhrzf3di2gjnrrfuu" style="color: black;">Advances in Mathematics</a> </i> &nbsp;
We study Poincaré duality algebras over the field F F F 2 of two elements. After introducing a connected sum operation for such algebras we compute the corresponding Grothendieck group of surface algebras (i.e., Poincaré algebras of formal dimension 2). We show that the corresponding group for 3-folds (i.e., algebras of formal dimension 3) is not finitely generated, but does have a Krull-Schmidt property. We then examine the isomorphism classes of 3-folds with at most three generators of degree
more &raquo; ... 3, provide a complete classification, settle which such occur as the cohomology of a smooth 3-manifold, and list separating invariants. The closing section and Appendix A provide several different means of constructing connected sum indecomposable 3-folds.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.aim.2010.04.013">doi:10.1016/j.aim.2010.04.013</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lhx3dakutfextpko6w5j37ldaq">fatcat:lhx3dakutfextpko6w5j37ldaq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170924205510/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/1be/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAwMTg3MDgxMDAwMTQ5MA%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ce/e3/cee3ce84a06f666a937bb2bc3503ad00a3f510d3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.aim.2010.04.013"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>